US3822754A - Automatic swimming pool cleaner - Google Patents

Automatic swimming pool cleaner Download PDF

Info

Publication number
US3822754A
US3822754A US00275173A US27517372A US3822754A US 3822754 A US3822754 A US 3822754A US 00275173 A US00275173 A US 00275173A US 27517372 A US27517372 A US 27517372A US 3822754 A US3822754 A US 3822754A
Authority
US
United States
Prior art keywords
car
vessel surface
wheels
pool
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00275173A
Inventor
M Henkin
J Laby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00275173A priority Critical patent/US3822754A/en
Priority to US05/448,817 priority patent/US3936899A/en
Application granted granted Critical
Publication of US3822754A publication Critical patent/US3822754A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1654Self-propelled cleaners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S180/00Motor vehicles
    • Y10S180/901Devices for traversing vertical surfaces

Definitions

  • ABSTRACT An automatic swimming pool cleaner comprised of a car adapted to travel underwater along a random path on the pool vessel surface for dislodging debris therefrom.
  • the car wheels are driven by a water powered turbine to propel the car in a forward direction, along the vessel surface.
  • a wheel geometry is employed which, upon contact, develops a horizontal force component parallel to the vertical wall, to thus enable the car to spin off.
  • a water flow produced reaction force can produce a torque to turn the car with re spect to the engaged wheel to enable the car to spin off.
  • the car is designed with a low center of gravity and a relatively buoyant top portion so as to produce a torque which maintains the car correct side up when on the pool bottom.
  • Means are provided on the car for producing a water flow having a force component perpendicular to the vessel surface to provide good traction between the car wheels and the vessel surface. Further, a water flow produced suction is created adjacent to the vessel surface for collecting debris into a basket carried by the car.
  • one or more hoses is pulled by the car and whipped by water flow to sweep dirt from the vessel surface.
  • This invention relates generally to an automatic swimming pool cleaner and more particularly to a cleaner comprised of a car adapted to travel under water along a random path on the surface of a pool vessel.
  • the present invention is directed to a swimming pool cleaner including a car adapted to travel underwater along a random path on the pool vessel surface.
  • the car is supported on power driven wheels which frictionally engage the vessel surface to drive it in a forward direction.
  • means are provided on the car for developing one or more water flows having a force component perpendicular to a plane tangential to the wheels for increasing traction between the wheels and vessel surface.
  • the water flows can, in addition, produce a forwardly directed force component which aids in propulsion and facilitates the climbing or spinning off of a vertical surface when encountered.
  • a car wheel geometry is employed which produces a sidewise force component when the car wheels engage a vertical surface to thus cause the car to spin off and free itself from the surface without necessitating a reversal of driving direction.
  • the car structure is configured so that its center of gravity is close to the bottom of its vertical dimension so as to produce a torque tending to maintain it correct side up when on the pool bottom.
  • one or more hoses are coupled to the car and whipped by water flow therethrough to sweep the vessel surface and put any dirt thereon in suspension.
  • means are provided on the car for producing a suction adjacent to the vessel surface for pulling debris into a collection basket or bag carried by the car.
  • the car is formed of a platform supported on three wheels which engage the pool vessel surface.
  • Two of the wheels are driven through gearing by a turbine which in turn is powered by water flowing thereto through a supply hose.
  • the two driven wheels are mounted for rotation about parallel, but spaced, axes.
  • the leading edges of the driven wheels lie on a line which is not perpendicular to their direction of travel thus enabling the car to spin off obstructions and steep surfaces.
  • the third wheel is mounted for rotation on an axis which pivots in a plane parallel to the plane tangential to the wheels so that this third wheel may be differently oriented for different pool surface slopes, thereby helping to randomly steer the car.
  • positive drive means such as a linkage to the turbine can be provided to gradually pivot the third wheel or vary the discharge angle of a water jet to assure random car movement.
  • the water flow producing a force component perpendicular to the vessel surface is preferably developed by diverting a low volume, high velocity water flow from the supply hose to an orifice to thus pull water into the lower end of a venturi having a directional component extending perpendicular to the car platform which water is then discharged at the venturis upper end.
  • the force reaction presses the wheels against the pool vessel surface to thus develop significantly greater traction for propulsion than the weight of the car alone could provide.
  • the car can be constructed of relatively light and low cost materials and have the capability of climbing vertical surfaces.
  • the suction produced adjacent the vessel surface by the water being pulled into the lower tube end draws debris from the pool surface into a collection basket carried by the car.
  • a portion of the water supply is diverted through the trailing sweep hoses to randomly whip them against the pool vessel surface.
  • means are provided withinthe collection basket for pulverizing leaves so that the remains can then be discharged and put in suspension in the pool water for later removal by the main filter system.
  • FIG. 1 is an isometric sectional view illustrating a pool cleaner in accordance with the present invention in a typical swimming pool;
  • FIG. 2 is a side elevation view of a preferred embodiment of the present invention.
  • FIG. 3 is a sectional view of a pool cleaner in accordance with the present invention taken substantially along the plane 3-3 of FIG. 2;
  • FIG. 4 is a side view, partially broken away, of a pool cleaner in accordance with the present invention.
  • FIG. 5 is a sectional view taken substantially along the plane 5-5 of FIG. 3;
  • FIG. 6 is a sectional view taken substantially along the plane 6-6 of FIG. 3;
  • FIG. 7 is a sectional view taken substantially along the plane 77 of FIG. 3;
  • FIG. 8 is a plan view partially broken away illustrating an alternative arrangement including a linkage coupling the turbine to the third wheel to cause random steering and a means for pulverizing leaves and other debris sucked into the collection basket;
  • FIG. 9 is a side elevation, partially broken away, of the pool cleaner of FIG. 8.
  • FIG. 10 is a sectional view taken substantially along the plane 10-10 of FIG. 8.
  • FIG. 1 illustrates a cutaway isometric view of a typical residential or com sharpal swimming pool.
  • the water 10 is contained within a vessel 12 generally defined by a reinforced concrete wall 14 poured to conform to the shape of an excavated hole.
  • a hole is excavated which defines a relatively deep end 16 and a relatively shallow end 18.
  • the wall 14 In conforming to the shape of the excavation, the wall 14 generally defines substantially horizontal or floor portions 19 as well as substantially vertical or wall portions 20 which rise above the intended level of the water 10 to decking or coping 2].
  • filtration systems employed with swimming pools of the type illustrated in FIG. 1 include a main pump and filter 22 for taking water from the pool, filtering the water, and returning the filtered water to the pool.
  • Such filtration systems employ water intake ports, such as a surface or skimmer intake 24 and a below water level drain intake 26. The filtration system sucks water into the intakes 24 and 26., and after filtration, returns the water to the pool via a return line 27 and return ports 28 extending through the vertical wall portion 20 close to the water line.
  • the present invention is directed to a cleaning apparatus 30 which travels along a random path on the surface of the pool vessel to both sweep the walls and suck debris into a debris container carried thereby.
  • FIGS. 2-7 illustrate a preferred embodiment of pool cleaner in accordance with the present invention.
  • the pool cleaner 30 is comprised of a car 32 having a frame or body structure 34 supported on some type of movable traction means such as wheels 36a, 36b, 36c.
  • the frame structure 34 can be essentially pan shaped, consisting of a bottom plate or platform 38 and upstanding sidewall 40 extending around the periphery thereof.
  • a dome or cover member 41 is provided having depending sidewalls 42 which mate with upstanding sidewall 40.
  • a turbine mechanism 44 is mounted within the frame structure 34 for producing rotary motion in response to a pressured water/flow supplied thereto.
  • the turbine 44 can be conventional in design having a water inlet port 46,
  • the output shaft 50 extends axially in both directions from the turbine 44 and is supported for rotation in openings through wall portions 51, 52.
  • Small gears 54, 56 are secured to the shaft 50 at opposite ends thereof.
  • the gear 54 is engaged with an annular rack 58 formed on the inner surface of wheel 36a as is best shown in FIGS. 3 and 4.
  • the wheel 36a is mounted for rotation on axle 59 which extends parallel to, but is spaced from, shaft 50.
  • the gear 56 is similarly engaged with annular rack 60 formed on the inner surface of wheel 36b mounted for rotation on axle 61.
  • Axle 61 also extends parallel to shaft 50 but is spaced therefrom in the direction opposite from axle 59.
  • wheel 36c is merely a support wheel, as shown in FIGS. 3 and 4 mounted for rotation about axle 71.
  • Axle 71 can be mounted for pivotal movement about pin 72 to better enable the wheel 360 to follow the contour of the vessel surface.
  • the turbine 44 is powered by water supplied to the port 46 via conduit 62 coupled to outlet 64 of a water supply manifold 66.
  • a pressured water/flow is supplied to the inlet 68 of the manifold 66 through a supply hose 69 preferably from a booster pump 70 (FIG. 1).
  • a booster pump 70 FIG. 1
  • the wall 14- of a typical pool is shaped with a relatively large radius of curvature between the substantially horizontal or floor portions of the pool vessel and the substantially vertical or sidewall portions.
  • many modern pools are not constructed with sharp corners between floor and wall.
  • the car 32 in accordance with the present invention is provided with water powered means for producing a thrust to increase traction between the wheels 36 and the vessel surface.
  • this thrust is produced by a water jet discharged from a directionally adjustable nozzle 90 and by a water stream discharged from a suction or vacuum unit 91.
  • the two thrust components produce a substantial force extending normal to the vessel surface thereby increasing traction between the wheels 36a, 36b, 36c and the vessel surface and enabling the car to climb vertical surfaces.
  • the nozzle 90 is preferably mounted on some type of universal fitting such as a ball coupling 92 which couples the nozzle to the supply manifold 66 for receiving a high pressure water supply from booster pump 70.
  • the angle of the nozzle 90 is selected to yield both a downward thrust component (i.e., normal to the vessel surface) for providing traction and a forward component which aids in propelling the car and facilitates the car climbing vertical surfaces and working itself out of comers.
  • Set means (not shown) can be provided for holding the selected angle of the nozzle and valve means (not shown) can be provided for varying the flow rate through the nozzle 90.
  • the vacuum unit 91 In use,'as the car is propelled along the vessel surface by rotation of the drive wheels 36a and 36b, the vacuum unit 91 will always discharge a water flow having a component normal to the portion of the vessel surface on which the car then rests.
  • the intensity of the water flow is selected to produce a reaction force sufficient to enable the car to climb vertical surfaces.
  • the combined effects of gravity, the cars inherent flotation characteristics and the directional variations produced by the water jet cause a change in direction of travel causing the car to fall off the vertical surface and reestablish its travel along another path.
  • the car In order to assure that the car lands correct side up, the car is designed to have a relatively low center of gravity; i.e., the weight distribution of the car is selected so that its center of gravity is close to the bottom of its vertical dimension, so as to thereby produce a bouyant torque tending to maintain it correct side up.
  • the entire car structure is preferably designed to weigh very little when underwater, thereby assuring that the hold down force produced by the water flow together with the weight distribution of the car, will cause the car to land correct side up whenever it falls from a wall surface.
  • the car carries with it one or more sweep hoses 96 which are trailed along and whip against the vessel surface. More particularly, a hose 96 is coupled to a tube 100 communicating with the interior of the supply manifold 66. The remote end of the hose 96 is left open via an orifice. Water flowing from the manifold 66 and tube 100 through the hose 96 will exit through the open hose end and in so doing will produce a reaction force on the hose whipping it in random directions. As a consequence, it will rub against and sweep fine debris from the vessel surface, putting it in suspension for removal by the pools standard filtration system.
  • a float 102 is preferably mounted around the tube to facilitate dynamic balance of the car.
  • a valve 104 is preferably incorporated in the tube 100 for controlling the flow rate to the sweep hose and thus the whipping action thereof.
  • a suction or vacuum head (FIGS. 3 and 4) extending across substantially the full width of the car between the wheels 36a and 36b is defined in the plate 38.
  • the suction head 110 defines a suction opening 112 at the bottom thereof.
  • the opening 112 narrows down and communicates with the lower end 114 of a venturi tube 116.
  • An orifice 118 is mounted in the throat of the venturi tube 116 for discharging a flow of water therethrough toward the open end 122 of the venturi tube.
  • Orifice 118 receives water flow via conduit 124 coupled to outlet 126 on the supply manifold 66.
  • the water discharged from the orifice 118 produces a reduced pressure in the throat area of the venturi tube thus producing a suction at the entrance opening 112.
  • the debris collection container constitutes a bag 124 formed of mesh material having an entrance opening sealed around the open end 122 of the venturi tube 116 by a band 125.
  • the bag 124 is of course removable from the venturi tube 116 for cleaning or disposal.
  • the supply hose 69 for supplying a pressured water flow to the manifold 66.
  • the hose float during operation as is represented in FIG. 1.
  • the hose can be caused to float by mounting suitable floats thereon.
  • the supply hose 69 can comprise a one-half inch inner diameter plastic hose, for example, having a swivel coupling 164 mounted in a first end thereof.
  • the swivel coupling 164 is adapted to be threaded into an outlet 166 provided in the pool vessel surface adjacent to the water surface.
  • a water booster pump 70 which can divert water out of the pools standard filtration system, provides a high pressure flow to the outlet 166.
  • the second end 162 of the hose 69 is coupled by a similar swivel coupling 170 to the previously mentioned supply manifold 66.
  • a swim- I ming pool cleaner has been disclosed herein which is comprised of a car which travels along a random path on the surface of a pool vessel propelled by traction wheels powered by a water driven turbine.
  • the car can be constructed of light-weight inexpensive materials, such as plastic.
  • a car in accordance with the invention can be produced quite inexpensively.
  • cost reduction and reliability improvement is further enhanced.
  • FIGS. 8-10 an alternative arrangement is shown in FIGS. 8-10 wherein, in lieu of utilizing a separate debris collection bag, the car structure itself forms the debris container with the car cover member 200 being perforated to permit water flow therethrough.
  • the mesh size for the water permeable material should be selected to suit a particular set of conditions. For example, in pool situations where many leaves are encountered, it would be desirable to utilize, material with relatively large holes so as to contain most of the leaves and enable the water to freely flow therethrough to suspend the rest of the debris for removal by the filter system. On the other hand, a pool with few leaves but a heavy silt problem would preferably use a very closely woven container material to remove the silt and reduce the load on the filter system.
  • a pulverizing means 210 (FIGS. 8 and 9) can be incorporated in the container to more positively pulverize the leaves. More particularly, as shown in FIG. 8 a collar 212 carrying a plurality of radially extending blades 214 can be mounted on turbine shaft 50. As the shaft 50 rotates, the blades 2143 move past fixed blade 216 shredding leaves therebetween.
  • FIGS. 840 illustrates one such means for varying the plane of rotation of the wheel 36( as the car moves.
  • the axle 71 of the wheel 360 is pivoted around pin 72' by a link 220 coupled between the axle 71 and gear 224.
  • gear 224 is engaged with worm gear 226 secured to turbine shaft 50'.
  • gears 224 and 226 rotate around their axes thus moving the end 228 of link 220 in a small circle. This alternately pulls and pushes the free end of axle 71' thus pivoting it about pin 72.
  • the direction of the nozzle 90 can be varied as the car moves, a movable rudder can be employed and/or the flow rate through the sweep hose can be varied.
  • tractions means other than the round wheels can be employed for increasing traction area or for facilitating travel of the car over low obstructions, such as a hose.
  • means can be provided for changing drive direction in special pool situations where the car could get stuck against some obstacle.
  • the preferred embodiments of the invention illustrated herein employ a booster pump for optimum performance, the booster pump could be eliminated in a low cost system and the turbine could be driven by water flow from the main pump.
  • said traction means including first and second driving wheels
  • thrust means carried by said car for producing a water flow having a component directed to produce a reaction force on said car acting to thrust said driving wheels against said pool vessel surface.
  • the car of claim 1 including steering means comprising a third wheel mounted on said frame for rotation in various planes extending substantially perpendicular to said common plane.
  • the car of claim 2 including means driven by said water supply means for varying the plane of rotation of said third wheel.
  • said thrust means includes a nozzle coupled to said water supply means for discharging a water flow in a direction having a component extending normal to said vessel surface.
  • the swimming pool cleaner of claim 4 including adjustable means for supporting said nozzle in different orientations.
  • Apparatus useful in a system employing a water pump for withdrawing water from a swimming pool and for returning a pressured water supply flow comprising:
  • a frame structure supported on movable traction means adapted to engage the surface of the pool, said traction means including first and second wheels;
  • turbine means supported on said frame structure including a power output member coupled to said first and second wheels;
  • thrust means supported on said framestructure and coupled to said supply hose means for discharging a portion of said water supply flow in a direction having a component extending normal to said vessel surface to produce a reaction force in a direction to increase the traction between said traction means and vessel surface.
  • booster pump means operatively coupled between said water pump and said supply flow in said supply hose means.
  • the apparatus of claim 9 including means driven by the water flow in said supply hose means for varying the plane of rotation of said third wheel.
  • propelling means carried by said car for propelling said car along said vessel surface
  • said wheel means including first and second parallel wheels each mounted for rotation on said frame and offset with respect to one another so that a line projected between the axes thereof is skewed with respect to the planes of said first and second wheels.
  • the car of claim 11 including drive means responsive to said propelling means for driving rotating said first and second wheels.
  • water supply means carried by said car having an inlet and an outlet
  • propelling means carried by said car for propelling said car along said vessel surface; thrust means carried by said car for producing a water flow having a component directed to produce a reaction force on said car acting to thrust said traction means against said pool vessel surface, said thrust means including a nozzle coupled to said water supply means outlet for discharging a water flow in a direction having a component extending normal to said vessel surface; and
  • adjustable means for supporting said nozzle in different orientations.
  • said traction means includes means mounting first and second wheels on opposite sides of said frame for rotation in substantially parallel planes and each oriented sustantially perpendicular to a common plane tangential to said first and second wheels.
  • said water supply means includes a second outlet and said propelling means includes a turbine for drivingly rotating said traction means in response to water supplied through said water supply means second outlet.
  • said water supply means includes a second outlet and said propelling means includes a nozzle coupled to said water supply means second outlet for discharging a water flow in a direction having a component extending substantially parallel to said vessel surface.
  • water supply means carried by said car having an inlet and first and second outlets;
  • propelling means carried by said car for propelling said car along said vessel surface, said propelling means including a nozzle coupled to said water supply means first outlet for discharging a water flow having a component directed substantially parallel to said vessel surface;
  • thrust means carried by said car including a nozzle coupled to said water supply means second outlet for discharging a water flow having a component directed normal to said vessel surface to produce a reaction force on said car acting to thrust said traction means against said vessel surface.

Abstract

An automatic swimming pool cleaner comprised of a car adapted to travel underwater along a random path on the pool vessel surface for dislodging debris therefrom. The car wheels are driven by a water powered turbine to propel the car in a forward direction, along the vessel surface. In order to prevent the car from being driven into a position, as for example against a vertical wall, from which it cannot emerge, a wheel geometry is employed which, upon contact, develops a horizontal force component parallel to the vertical wall, to thus enable the car to spin off. Alternatively, or in combination, a water flow produced reaction force can produce a torque to turn the car with respect to the engaged wheel to enable the car to spin off. The car is designed with a low center of gravity and a relatively buoyant top portion so as to produce a torque which maintains the car correct side up when on the pool bottom. Means are provided on the car for producing a water flow having a force component perpendicular to the vessel surface to provide good traction between the car wheels and the vessel surface. Further, a water flow produced suction is created adjacent to the vessel surface for collecting debris into a basket carried by the car. In addition, one or more hoses is pulled by the car and whipped by water flow to sweep dirt from the vessel surface.

Description

United States atent Henkin et a1.
[451 ,Huly 9,1974
[ AUTOMATIC SWING POOL CLEANER [76] Inventors: Melvyn L. llenkin, 19640 Greenbriar Dr., Tarzana, Calif. 91356; J0rdan M. Laby, 3940 Davana Rd., Sherman Oaks, Calif. 91403 [22] Filed: July 26, 1972 [21] Appl. No.: 275,173
[52] U.S. Cl. 180/1 R, 115/].7, 180/7 J, 239/240 [51] Int. Cl. E0411 3/20, A471 5/00 [58] Field of Search l5/l.7, 387; 114/222; 180/66 R, 7 T, 1 R, 1 VS [56] References Cited UNITED STATES PATENTS 1,466,315 8/1923 Thorsen 15/].7 UX 2,314,675 3/1943 Wilson 180/66 R 3,238,549 3/1966 Burlin et a1. 15/l.7 3,551,930 l/l97l Myers 15/l.7
[57] ABSTRACT An automatic swimming pool cleaner comprised of a car adapted to travel underwater along a random path on the pool vessel surface for dislodging debris therefrom. The car wheels are driven by a water powered turbine to propel the car in a forward direction, along the vessel surface. In order to prevent the car from being driven into a position, as for example against a vertical wall, from which it cannot emerge, a wheel geometry is employed which, upon contact, develops a horizontal force component parallel to the vertical wall, to thus enable the car to spin off. Alternatively, or in combination, a water flow produced reaction force can produce a torque to turn the car with re spect to the engaged wheel to enable the car to spin off. The car is designed with a low center of gravity and a relatively buoyant top portion so as to produce a torque which maintains the car correct side up when on the pool bottom. Means are provided on the car for producing a water flow having a force component perpendicular to the vessel surface to provide good traction between the car wheels and the vessel surface. Further, a water flow produced suction is created adjacent to the vessel surface for collecting debris into a basket carried by the car. In addition, one or more hoses is pulled by the car and whipped by water flow to sweep dirt from the vessel surface.
19 Claims, 10 Drawing Figures l v 7 3? l 30 Gr PAIENIED 3.822.754 sum 1 or 4 MAIN P & P
WEE Boom I 2'7 1; 1 q
PAIENIEBJUL SIBM 3.822.754
' SHEEI 3 0F 4 PATENIEnJuL 9I974 I 3.822.754
saw u or 4 I AUTOMATIC SWIMMING POOL CLEANER BACKGROUND OF THE INVENTION This invention relates generally to an automatic swimming pool cleaner and more particularly to a cleaner comprised of a car adapted to travel under water along a random path on the surface of a pool vessel.
Many different types of apparatus are disclosed in the prior art for cleaning swimming pools. An example is US. Pat. No. 3,291,145 which discloses a cleaner employing a floating head carrying high pressure liquid dispensing hoses which sweep the pool vessel walls so as to put any dirt thereon in suspension where it can be filtered out by the pools standard filtration system. As further examples, US. Pat. Nos. 2,923,954 and 3,108,298 disclosecleaners in which wheeled vehicles move underwater along the pool vessel surface to collect debris and sweep the walls.
Prior art underwater cleaners have thus far met with only limited success for several reasons. Initially, in order to develop adequate traction between the wheels and pool vessel surface, they have typically had to be very heavy and cumbersome. Moreover, those underwater cleaners which employ an electric motor have proved to be somewhat inconvenient because of the potential shock hazard. That is, since it is normally recommended that the motor not be operated while there are swimmers in the pool, the cleaner cannot safely be left in the pool under the control of a time clock. As a consequence, the use of such cleaners has, for the most part, been restricted to commercial applications.
Further, it is characteristic of most prior art underwater cleaners to utilize relatively complex reversing and steering mechanisms in order to achieve adequate surface coverage. Such complex mechanisms are generally costly and relatively unreliable.
In view of the foregoing, it is an object of the present invention to provide an improved underwater swimming pool cleaner.
SUMMARY OF THE INVENTION Briefly, the present invention is directed to a swimming pool cleaner including a car adapted to travel underwater along a random path on the pool vessel surface. The car is supported on power driven wheels which frictionally engage the vessel surface to drive it in a forward direction. In accordance with an important aspect of the invention, means are provided on the car for developing one or more water flows having a force component perpendicular to a plane tangential to the wheels for increasing traction between the wheels and vessel surface. The water flows can, in addition, produce a forwardly directed force component which aids in propulsion and facilitates the climbing or spinning off of a vertical surface when encountered.
In accordance with a further aspect of the invention, a car wheel geometry is employed which produces a sidewise force component when the car wheels engage a vertical surface to thus cause the car to spin off and free itself from the surface without necessitating a reversal of driving direction.
In accordance with a still further aspect of the invention, the car structure is configured so that its center of gravity is close to the bottom of its vertical dimension so as to produce a torque tending to maintain it correct side up when on the pool bottom.
In accordance with a still further aspect of the invention, one or more hoses are coupled to the car and whipped by water flow therethrough to sweep the vessel surface and put any dirt thereon in suspension.
In accordance with a still further aspect of the invention, means are provided on the car for producing a suction adjacent to the vessel surface for pulling debris into a collection basket or bag carried by the car.
In a preferred embodiment of the invention, the car is formed of a platform supported on three wheels which engage the pool vessel surface. Two of the wheels are driven through gearing by a turbine which in turn is powered by water flowing thereto through a supply hose. In order to achieve the aforementioned spinoff effect, the two driven wheels are mounted for rotation about parallel, but spaced, axes. As a consequence, the leading edges of the driven wheels lie on a line which is not perpendicular to their direction of travel thus enabling the car to spin off obstructions and steep surfaces. The third wheel is mounted for rotation on an axis which pivots in a plane parallel to the plane tangential to the wheels so that this third wheel may be differently oriented for different pool surface slopes, thereby helping to randomly steer the car. Alternatively, positive drive means such as a linkage to the turbine can be provided to gradually pivot the third wheel or vary the discharge angle of a water jet to assure random car movement.
The water flow producing a force component perpendicular to the vessel surface is preferably developed by diverting a low volume, high velocity water flow from the supply hose to an orifice to thus pull water into the lower end of a venturi having a directional component extending perpendicular to the car platform which water is then discharged at the venturis upper end. The force reaction presses the wheels against the pool vessel surface to thus develop significantly greater traction for propulsion than the weight of the car alone could provide. As a consequence, the car can be constructed of relatively light and low cost materials and have the capability of climbing vertical surfaces. The suction produced adjacent the vessel surface by the water being pulled into the lower tube end draws debris from the pool surface into a collection basket carried by the car. Although a single water flow is used in the preferred embodiment of the invention for providing the primary hold down force as well as suction for picking up debris, it will be readily recognized that separate flows could be provided for this purpose if desired.
In accordance with another aspect of the invention, a portion of the water supply is diverted through the trailing sweep hoses to randomly whip them against the pool vessel surface.
In accordance with a still further aspect of the invention, means are provided withinthe collection basket for pulverizing leaves so that the remains can then be discharged and put in suspension in the pool water for later removal by the main filter system.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an isometric sectional view illustrating a pool cleaner in accordance with the present invention in a typical swimming pool;
FIG. 2 is a side elevation view of a preferred embodiment of the present invention;
FIG. 3 is a sectional view of a pool cleaner in accordance with the present invention taken substantially along the plane 3-3 of FIG. 2;
FIG. 4 is a side view, partially broken away, of a pool cleaner in accordance with the present invention;
FIG. 5 is a sectional view taken substantially along the plane 5-5 of FIG. 3;
FIG. 6 is a sectional view taken substantially along the plane 6-6 of FIG. 3;
FIG. 7 is a sectional view taken substantially along the plane 77 of FIG. 3;
FIG. 8 is a plan view partially broken away illustrating an alternative arrangement including a linkage coupling the turbine to the third wheel to cause random steering and a means for pulverizing leaves and other debris sucked into the collection basket;
FIG. 9 is a side elevation, partially broken away, of the pool cleaner of FIG. 8; and
FIG. 10 is a sectional view taken substantially along the plane 10-10 of FIG. 8.
DESCRIPTION OF THE PREFERRED EMBODIMENT Attention is now called to FIG. 1 which illustrates a cutaway isometric view of a typical residential or com mercial swimming pool. The water 10 is contained within a vessel 12 generally defined by a reinforced concrete wall 14 poured to conform to the shape of an excavated hole. Typically, a hole is excavated which defines a relatively deep end 16 and a relatively shallow end 18. In conforming to the shape of the excavation, the wall 14 generally defines substantially horizontal or floor portions 19 as well as substantially vertical or wall portions 20 which rise above the intended level of the water 10 to decking or coping 2].
Typically, filtration systems employed with swimming pools of the type illustrated in FIG. 1 include a main pump and filter 22 for taking water from the pool, filtering the water, and returning the filtered water to the pool. Such filtration systems employ water intake ports, such as a surface or skimmer intake 24 and a below water level drain intake 26. The filtration system sucks water into the intakes 24 and 26., and after filtration, returns the water to the pool via a return line 27 and return ports 28 extending through the vertical wall portion 20 close to the water line.
Although the typical swimming pool filtration system does quite an adequate job of filtering the water to remove fine debris particles suspended therein, such systems are not effective to remove debris, such as leaves, which settle on the floor of the pool or fine particles of debris which settle on both the floor and vertical wall portions of the pool vessel surface. As a consequence, in order to maintain a swimming pool clean, it is necessary to periodically sweep the wall surface, as with a long-handled brush, to place any fine debris in suspension. Additionally, it is also necessary to periodically vacuum the pool floor to remove larger debris such as leaves.
The present invention is directed to a cleaning apparatus 30 which travels along a random path on the surface of the pool vessel to both sweep the walls and suck debris into a debris container carried thereby.
Attention is now called to FIGS. 2-7 which illustrate a preferred embodiment of pool cleaner in accordance with the present invention.
The pool cleaner 30 is comprised of a car 32 having a frame or body structure 34 supported on some type of movable traction means such as wheels 36a, 36b, 36c. As shown in FIG. 4, the frame structure 34 can be essentially pan shaped, consisting of a bottom plate or platform 38 and upstanding sidewall 40 extending around the periphery thereof. A dome or cover member 41 is provided having depending sidewalls 42 which mate with upstanding sidewall 40.
In accordance with the present invention, a turbine mechanism 44 is mounted within the frame structure 34 for producing rotary motion in response to a pressured water/flow supplied thereto. The turbine 44 can be conventional in design having a water inlet port 46,
a water outlet port 48, and a power output shaft 50 which is rotated in response to water being supplied to the port 46.
The output shaft 50 extends axially in both directions from the turbine 44 and is supported for rotation in openings through wall portions 51, 52. Small gears 54, 56 are secured to the shaft 50 at opposite ends thereof. The gear 54 is engaged with an annular rack 58 formed on the inner surface of wheel 36a as is best shown in FIGS. 3 and 4. The wheel 36a is mounted for rotation on axle 59 which extends parallel to, but is spaced from, shaft 50. The gear 56 is similarly engaged with annular rack 60 formed on the inner surface of wheel 36b mounted for rotation on axle 61. Axle 61 also extends parallel to shaft 50 but is spaced therefrom in the direction opposite from axle 59. In contrast to the drive or traction function performed by wheels 36a and 36b, wheel 36c is merely a support wheel, as shown in FIGS. 3 and 4 mounted for rotation about axle 71. Axle 71 can be mounted for pivotal movement about pin 72 to better enable the wheel 360 to follow the contour of the vessel surface.
The turbine 44 is powered by water supplied to the port 46 via conduit 62 coupled to outlet 64 of a water supply manifold 66. A pressured water/flow is supplied to the inlet 68 of the manifold 66 through a supply hose 69 preferably from a booster pump 70 (FIG. 1). As the turbine 44 rotates to drive the shaft 50, both the wheel 36a and wheel 36b will rotate.
It will be noted from FIG. 3 that although the wheels 36a and 36b rotate about parallel axes, the axes are offset with respect to one another. In other words, a line projected between the axes of wheels 36a and 36b will be skewed with respect to the planes of rotation of the wheels. As a consequence of this skew arrangement, the car will avoid getting stuck against vertical walls or barriers. That. is, in its random travel along the pool vessel surface, even if the wheels 36a and 36b simultaneously engage a large obstacle such as the vertical wall of a step, the skewed relationship of the wheels 36a and 36b relative to the direction of travel will produce a force component extending parallel to the vertical wall to thus enable the car to spin off and thus avoid getting stuck in a position from which it cannot emerge.
It will be recalled from FIG. 1 that the wall 14- of a typical pool is shaped with a relatively large radius of curvature between the substantially horizontal or floor portions of the pool vessel and the substantially vertical or sidewall portions. In other words, for structural integrity and to facilitate water flow, many modern pools are not constructed with sharp corners between floor and wall. In order to most effectively clean a pool, it is desirable of course that the car be able to traverse as much of the pool vessel surface as possible. In other words, it is desirable that the car be able to climb the substantially vertically oriented portions of the pool vessel wall. In order to accomplish this, the car 32 in accordance with the present invention is provided with water powered means for producing a thrust to increase traction between the wheels 36 and the vessel surface. In accordance with the preferred embodiment of the invention, this thrust is produced by a water jet discharged from a directionally adjustable nozzle 90 and by a water stream discharged from a suction or vacuum unit 91. The two thrust components produce a substantial force extending normal to the vessel surface thereby increasing traction between the wheels 36a, 36b, 36c and the vessel surface and enabling the car to climb vertical surfaces.
The nozzle 90 is preferably mounted on some type of universal fitting such as a ball coupling 92 which couples the nozzle to the supply manifold 66 for receiving a high pressure water supply from booster pump 70. The angle of the nozzle 90 is selected to yield both a downward thrust component (i.e., normal to the vessel surface) for providing traction and a forward component which aids in propelling the car and facilitates the car climbing vertical surfaces and working itself out of comers. Set means (not shown) can be provided for holding the selected angle of the nozzle and valve means (not shown) can be provided for varying the flow rate through the nozzle 90.
In use,'as the car is propelled along the vessel surface by rotation of the drive wheels 36a and 36b, the vacuum unit 91 will always discharge a water flow having a component normal to the portion of the vessel surface on which the car then rests. The intensity of the water flow is selected to produce a reaction force sufficient to enable the car to climb vertical surfaces. As the car climbs, the combined effects of gravity, the cars inherent flotation characteristics and the directional variations produced by the water jet (and other effects to be discussed) cause a change in direction of travel causing the car to fall off the vertical surface and reestablish its travel along another path. In order to assure that the car lands correct side up, the car is designed to have a relatively low center of gravity; i.e., the weight distribution of the car is selected so that its center of gravity is close to the bottom of its vertical dimension, so as to thereby produce a bouyant torque tending to maintain it correct side up. The entire car structure is preferably designed to weigh very little when underwater, thereby assuring that the hold down force produced by the water flow together with the weight distribution of the car, will cause the car to land correct side up whenever it falls from a wall surface.
The car carries with it one or more sweep hoses 96 which are trailed along and whip against the vessel surface. More particularly, a hose 96 is coupled to a tube 100 communicating with the interior of the supply manifold 66. The remote end of the hose 96 is left open via an orifice. Water flowing from the manifold 66 and tube 100 through the hose 96 will exit through the open hose end and in so doing will produce a reaction force on the hose whipping it in random directions. As a consequence, it will rub against and sweep fine debris from the vessel surface, putting it in suspension for removal by the pools standard filtration system. A float 102 is preferably mounted around the tube to facilitate dynamic balance of the car. A valve 104 is preferably incorporated in the tube 100 for controlling the flow rate to the sweep hose and thus the whipping action thereof.
In the course of moving along a random path on the pool vessel surface in a manner thus far described, it is of course the function of the cleaner to clean the surface as by putting fine debris thereon in suspension for removel by the standard filtration system.
In addition, in accordance with the invention, large debris such as leaves are collected by the subject cleaner by the vacuum unit 91 which produces a suction close to the pool vessel surface. More particularly, a suction or vacuum head (FIGS. 3 and 4) extending across substantially the full width of the car between the wheels 36a and 36b is defined in the plate 38. The suction head 110 defines a suction opening 112 at the bottom thereof. The opening 112 narrows down and communicates with the lower end 114 of a venturi tube 116. An orifice 118 is mounted in the throat of the venturi tube 116 for discharging a flow of water therethrough toward the open end 122 of the venturi tube. Orifice 118 receives water flow via conduit 124 coupled to outlet 126 on the supply manifold 66. As should be appreciated, the water discharged from the orifice 118 produces a reduced pressure in the throat area of the venturi tube thus producing a suction at the entrance opening 112. As a consequence, water and debris are drawn from the vessel surface into the opening 112 and through the venturi tube 116. The water and debris are then discharged through the open venturi end 122 into a debris collection container. In the embodiment of the invention illustrated in FIGS. 2-7, the debris collection container constitutes a bag 124 formed of mesh material having an entrance opening sealed around the open end 122 of the venturi tube 116 by a band 125. The bag 124 is of course removable from the venturi tube 116 for cleaning or disposal.
Reference was previously made to a supply hose 69 for supplying a pressured water flow to the manifold 66. In order to assure that the car does not get entangled with the supply hose 69, it is preferable that the hose float during operation as is represented in FIG. 1. The hose of course can be caused to float by mounting suitable floats thereon. More particularly, the supply hose 69 can comprise a one-half inch inner diameter plastic hose, for example, having a swivel coupling 164 mounted in a first end thereof. The swivel coupling 164 is adapted to be threaded into an outlet 166 provided in the pool vessel surface adjacent to the water surface. A water booster pump 70 which can divert water out of the pools standard filtration system, provides a high pressure flow to the outlet 166. The second end 162 of the hose 69 is coupled by a similar swivel coupling 170 to the previously mentioned supply manifold 66.
From the foregoing, it will be recognized that a swim- I ming pool cleaner has been disclosed herein which is comprised of a car which travels along a random path on the surface of a pool vessel propelled by traction wheels powered by a water driven turbine. As a consequence of employing the previously discussed water streams to produce a significant traction force between the wheels and the vessel surface, the car can be constructed of light-weight inexpensive materials, such as plastic. By being able to utilize light weight materials such as plastic, a car in accordance with the invention can be produced quite inexpensively. Moreover, by designing the car so as to assure full coverage of the pool vessel surface without requiring complex steering and reversing mechanisms, cost reduction and reliability improvement is further enhanced. Although a particular embodiment of the invention has been illustrated in FIGS. 2-7, it should be readily apparent that many variations can be made without departing from the spirit or scope of the invention. Thus, for example only, an alternative arrangement is shown in FIGS. 8-10 wherein, in lieu of utilizing a separate debris collection bag, the car structure itself forms the debris container with the car cover member 200 being perforated to permit water flow therethrough.
Utilization of the arrangement of FIGS. 8-10 contemplates that a user remove the dome 200 and then clean the debris from the pan shaped frame structure. In both the arrangement of FIGS. 8-10 and the ar rangement of FIGS. 2-7, the mesh size for the water permeable material should be selected to suit a particular set of conditions. For example, in pool situations where many leaves are encountered, it would be desirable to utilize, material with relatively large holes so as to contain most of the leaves and enable the water to freely flow therethrough to suspend the rest of the debris for removal by the filter system. On the other hand, a pool with few leaves but a heavy silt problem would preferably use a very closely woven container material to remove the silt and reduce the load on the filter system.
In using the subject pool cleaner, it has been recognized that as the leaves collect within the container, the high velocity water stream discharged from the upper end of the venturi tube continually beats the leaves against the container screen material. As a consequence, the leaves are pulverized into fine particles which pass through the screen material and go into suspension in the water from which they can be removed by the pools regular filtration system. As a result of this action, the frequency with which the debris must be removed from the container is considerably reduced. In pool situations with a greater then normal leaf problem a pulverizing means 210 (FIGS. 8 and 9) can be incorporated in the container to more positively pulverize the leaves. More particularly, as shown in FIG. 8 a collar 212 carrying a plurality of radially extending blades 214 can be mounted on turbine shaft 50. As the shaft 50 rotates, the blades 2143 move past fixed blade 216 shredding leaves therebetween.
In order for the pool cleaner to function effectively, it should travel in a highly random manner so as to substantially cover the entire vessel surface. Various factors operating on the car depicted in FIGS. 27 will tend to produce this random motion. Such factors include the vessel surface terrain, the action of the whip hose 96 and the direction of the nozzle 90. However, it is recognized that if necessary, for certain pool situations, means can be incorporated in the car for positively randomizing the car motion. For example, attention is called to FIGS. 840 which illustrates one such means for varying the plane of rotation of the wheel 36( as the car moves. In the embodiment of FIGS. 840, the axle 71 of the wheel 360 is pivoted around pin 72' by a link 220 coupled between the axle 71 and gear 224. The gear 224 is engaged with worm gear 226 secured to turbine shaft 50'. As shaft 50' rotates, gears 224 and 226 rotate around their axes thus moving the end 228 of link 220 in a small circle. This alternately pulls and pushes the free end of axle 71' thus pivoting it about pin 72.
It should be recognized that other arrangements can also be employed for achieving the random motion produced by the embodiment of FIGS. 8-10. For example only, the direction of the nozzle 90 can be varied as the car moves, a movable rudder can be employed and/or the flow rate through the sweep hose can be varied.
From the foregoing, it will be recognized than an improved swimming pool cleaner has been disclosed herein which is capable of randomly traveling on the pool vessel surface and collecting debris therefrom as well as dislodging debris from the surface for collection by the pools standard filtration system. Although a preferred embodiment of the invention has been illus trated herein, it is recognized that numerous variations and modifications can be made therein without departing from the spirit and scope of the invention. Thus, for example only, tractions means other than the round wheels can be employed for increasing traction area or for facilitating travel of the car over low obstructions, such as a hose. Similarly, means can be provided for changing drive direction in special pool situations where the car could get stuck against some obstacle. It should also be recognized that although the preferred embodiments of the invention illustrated herein employ a booster pump for optimum performance, the booster pump could be eliminated in a low cost system and the turbine could be driven by water flow from the main pump.
I claim:
1. A car adapted to travel underwater on the surface of a swimming pool vessel, said car including:
a frame supported on traction means for engaging said pool vessel surface;
said traction means including first and second driving wheels;
means mounting said first and second driving wheels on opposite sides of said frame, each for rotation about its own axis, with the rotational axes of said driving wheels extending substantially parallel and offset with respect to one another so that a line projected between the centers of said first and second driving wheels is skewed with respect to said rotational axes water supply means carried by said car having an inlet and an outlet;
turbine means carried by said car coupled to said one water supply means outlet,
drive means coupling said turbine means to said traction means for drivingly rotating said driving wheels in response to water supplied to said turbine means for propelling said car along said vessel surface; and
thrust means carried by said car for producing a water flow having a component directed to produce a reaction force on said car acting to thrust said driving wheels against said pool vessel surface.
2. The car of claim 1 including steering means comprising a third wheel mounted on said frame for rotation in various planes extending substantially perpendicular to said common plane.
3. The car of claim 2 including means driven by said water supply means for varying the plane of rotation of said third wheel.
4. The swimming pool cleaner of claim 1 wherein said thrust means includes a nozzle coupled to said water supply means for discharging a water flow in a direction having a component extending normal to said vessel surface.
5. The swimming pool cleaner of claim 4 including adjustable means for supporting said nozzle in different orientations.
6. Apparatus useful in a system employing a water pump for withdrawing water from a swimming pool and for returning a pressured water supply flow, said apparatus comprising:
a frame structure supported on movable traction means adapted to engage the surface of the pool, said traction means including first and second wheels;
means supporting said first and second wheels for rotation in substantially parallel planes and offset from one another whereby a line projected between the leading edges of said wheels is skewed relative to the planes of rotation of said wheels;
turbine means supported on said frame structure including a power output member coupled to said first and second wheels;
supply hose means for coupling said water supply flow from said water pump to said turbine means for driving said power output member; and
thrust means supported on said framestructure and coupled to said supply hose means for discharging a portion of said water supply flow in a direction having a component extending normal to said vessel surface to produce a reaction force in a direction to increase the traction between said traction means and vessel surface.
7. The apparatus of claim 6 including booster pump means operatively coupled between said water pump and said supply flow in said supply hose means.
8. The apparatus of claim 6 including gear means formed on each of said first and second wheels; and wherein said means coupling said turbine means power output member to said first and second wheels includes first and second gears secured to said output member and engaged with said first and second wheel gear means.
9. The apparatus of claim 6 including a third wheel; and
means mounting said third wheel for rotation in various planes.
10. The apparatus of claim 9 including means driven by the water flow in said supply hose means for varying the plane of rotation of said third wheel.
11. A car adapted to travel underwater on the surface of a pool vessel, said car including:
a frame supported on wheel means for engaging said pool vessel surface; and
propelling means carried by said car for propelling said car along said vessel surface;
said wheel means including first and second parallel wheels each mounted for rotation on said frame and offset with respect to one another so that a line projected between the axes thereof is skewed with respect to the planes of said first and second wheels.
12. The car of claim 11 including drive means responsive to said propelling means for driving rotating said first and second wheels.
13. A car adapted to travel underwater on the surface of a pool vessel, said car including:
a frame supported on traction means for engaging said vessel surface;
water supply means carried by said car having an inlet and an outlet,
propelling means carried by said car for propelling said car along said vessel surface; thrust means carried by said car for producing a water flow having a component directed to produce a reaction force on said car acting to thrust said traction means against said pool vessel surface, said thrust means including a nozzle coupled to said water supply means outlet for discharging a water flow in a direction having a component extending normal to said vessel surface; and
adjustable means for supporting said nozzle in different orientations.
14. The car of claim 13 wherein said traction means includes means mounting first and second wheels on opposite sides of said frame for rotation in substantially parallel planes and each oriented sustantially perpendicular to a common plane tangential to said first and second wheels.
15. The car of claim 14 wherein said mounting means positions said first and second wheels on said frame offset with respect to one another so that a line projected between the axes of said wheels is skewed with respect to the planes thereof.
16. The car of claim 13 wherein said water supply means includes a second outlet and said propelling means includes a turbine for drivingly rotating said traction means in response to water supplied through said water supply means second outlet.
17. The car of claim 13 wherein said water supply means includes a second outlet and said propelling means includes a nozzle coupled to said water supply means second outlet for discharging a water flow in a direction having a component extending substantially parallel to said vessel surface.
18. A car adapted to travel underwater on the surface of a pool vessel, said car including:
a frame supported on traction means for engaging said pool vessel surface;
water supply means carried by said car having an inlet and first and second outlets;
propelling means carried by said car for propelling said car along said vessel surface, said propelling means including a nozzle coupled to said water supply means first outlet for discharging a water flow having a component directed substantially parallel to said vessel surface; and
thrust means carried by said car including a nozzle coupled to said water supply means second outlet for discharging a water flow having a component directed normal to said vessel surface to produce a reaction force on said car acting to thrust said traction means against said vessel surface.
19. A car adpated to travel underwater on the surface of a pool vessel, said car including:
a frame supported on traction means for engaging said pool vessel surface; water supply means carried inlet and an outlet;
by said car having an propelling means carried by said car for propelling tially parallel to said vessel surface; and
531d Car along W556] Surface and propelling adjustable means for supporting said nozzle in differmeans including a nozzle coupled to said water supply means outlet for discharging a water flow in a direction having a component extending substanent orientations.

Claims (19)

1. A car adapted to travel underwater on the surface of a swimming pool vessel, said car including: a frame supported on traction means for engAging said pool vessel surface; said traction means including first and second driving wheels; means mounting said first and second driving wheels on opposite sides of said frame, each for rotation about its own axis, with the rotational axes of said driving wheels extending substantially parallel and offset with respect to one another so that a line projected between the centers of said first and second driving wheels is skewed with respect to said rotational axes water supply means carried by said car having an inlet and an outlet; turbine means carried by said car coupled to said one water supply means outlet, drive means coupling said turbine means to said traction means for drivingly rotating said driving wheels in response to water supplied to said turbine means for propelling said car along said vessel surface; and thrust means carried by said car for producing a water flow having a component directed to produce a reaction force on said car acting to thrust said driving wheels against said pool vessel surface.
2. The car of claim 1 including steering means comprising a third wheel mounted on said frame for rotation in various planes extending substantially perpendicular to said common plane.
3. The car of claim 2 including means driven by said water supply means for varying the plane of rotation of said third wheel.
4. The swimming pool cleaner of claim 1 wherein said thrust means includes a nozzle coupled to said water supply means for discharging a water flow in a direction having a component extending normal to said vessel surface.
5. The swimming pool cleaner of claim 4 including adjustable means for supporting said nozzle in different orientations.
6. Apparatus useful in a system employing a water pump for withdrawing water from a swimming pool and for returning a pressured water supply flow, said apparatus comprising: a frame structure supported on movable traction means adapted to engage the surface of the pool, said traction means including first and second wheels; means supporting said first and second wheels for rotation in substantially parallel planes and offset from one another whereby a line projected between the leading edges of said wheels is skewed relative to the planes of rotation of said wheels; turbine means supported on said frame structure including a power output member coupled to said first and second wheels; supply hose means for coupling said water supply flow from said water pump to said turbine means for driving said power output member; and thrust means supported on said frame structure and coupled to said supply hose means for discharging a portion of said water supply flow in a direction having a component extending normal to said vessel surface to produce a reaction force in a direction to increase the traction between said traction means and vessel surface.
7. The apparatus of claim 6 including booster pump means operatively coupled between said water pump and said supply flow in said supply hose means.
8. The apparatus of claim 6 including gear means formed on each of said first and second wheels; and wherein said means coupling said turbine means power output member to said first and second wheels includes first and second gears secured to said output member and engaged with said first and second wheel gear means.
9. The apparatus of claim 6 including a third wheel; and means mounting said third wheel for rotation in various planes.
10. The apparatus of claim 9 including means driven by the water flow in said supply hose means for varying the plane of rotation of said third wheel.
11. A car adapted to travel underwater on the surface of a pool vessel, said car including: a frame supported on wheel means for engaging said pool vessel surface; and propelling means carried by said car for propelling said car along said vessel surface; said wheel means including first and second parallel wheels each mounted For rotation on said frame and offset with respect to one another so that a line projected between the axes thereof is skewed with respect to the planes of said first and second wheels.
12. The car of claim 11 including drive means responsive to said propelling means for driving rotating said first and second wheels.
13. A car adapted to travel underwater on the surface of a pool vessel, said car including: a frame supported on traction means for engaging said vessel surface; water supply means carried by said car having an inlet and an outlet, propelling means carried by said car for propelling said car along said vessel surface; thrust means carried by said car for producing a water flow having a component directed to produce a reaction force on said car acting to thrust said traction means against said pool vessel surface, said thrust means including a nozzle coupled to said water supply means outlet for discharging a water flow in a direction having a component extending normal to said vessel surface; and adjustable means for supporting said nozzle in different orientations.
14. The car of claim 13 wherein said traction means includes means mounting first and second wheels on opposite sides of said frame for rotation in substantially parallel planes and each oriented sustantially perpendicular to a common plane tangential to said first and second wheels.
15. The car of claim 14 wherein said mounting means positions said first and second wheels on said frame offset with respect to one another so that a line projected between the axes of said wheels is skewed with respect to the planes thereof.
16. The car of claim 13 wherein said water supply means includes a second outlet and said propelling means includes a turbine for drivingly rotating said traction means in response to water supplied through said water supply means second outlet.
17. The car of claim 13 wherein said water supply means includes a second outlet and said propelling means includes a nozzle coupled to said water supply means second outlet for discharging a water flow in a direction having a component extending substantially parallel to said vessel surface.
18. A car adapted to travel underwater on the surface of a pool vessel, said car including: a frame supported on traction means for engaging said pool vessel surface; water supply means carried by said car having an inlet and first and second outlets; propelling means carried by said car for propelling said car along said vessel surface, said propelling means including a nozzle coupled to said water supply means first outlet for discharging a water flow having a component directed substantially parallel to said vessel surface; and thrust means carried by said car including a nozzle coupled to said water supply means second outlet for discharging a water flow having a component directed normal to said vessel surface to produce a reaction force on said car acting to thrust said traction means against said vessel surface.
19. A car adpated to travel underwater on the surface of a pool vessel, said car including: a frame supported on traction means for engaging said pool vessel surface; water supply means carried by said car having an inlet and an outlet; propelling means carried by said car for propelling said car along said vessel surface, said propelling means including a nozzle coupled to said water supply means outlet for discharging a water flow in a direction having a component extending substantially parallel to said vessel surface; and adjustable means for supporting said nozzle in different orientations.
US00275173A 1972-07-26 1972-07-26 Automatic swimming pool cleaner Expired - Lifetime US3822754A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00275173A US3822754A (en) 1972-07-26 1972-07-26 Automatic swimming pool cleaner
US05/448,817 US3936899A (en) 1972-07-26 1974-03-07 Automatic swimming pool cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00275173A US3822754A (en) 1972-07-26 1972-07-26 Automatic swimming pool cleaner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/448,817 Division US3936899A (en) 1972-07-26 1974-03-07 Automatic swimming pool cleaner

Publications (1)

Publication Number Publication Date
US3822754A true US3822754A (en) 1974-07-09

Family

ID=23051188

Family Applications (1)

Application Number Title Priority Date Filing Date
US00275173A Expired - Lifetime US3822754A (en) 1972-07-26 1972-07-26 Automatic swimming pool cleaner

Country Status (1)

Country Link
US (1) US3822754A (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928202A (en) * 1973-07-26 1975-12-23 Peacock Investments Ltd Apparatus for cleaning the surface of a liquid
US4100641A (en) * 1976-06-24 1978-07-18 Pansini Andrew L Swimming pool cleaners
WO1985000903A1 (en) * 1983-08-15 1985-02-28 Autarkic Flow Controls Timed flow control valve assembly
US4558479A (en) * 1984-01-26 1985-12-17 Alopex Industries, Inc. Pool cleaner
US4575423A (en) * 1984-11-01 1986-03-11 Alopex Industries, Inc. Debris collection bag for pool cleaners
US4589986A (en) * 1984-01-26 1986-05-20 Alopex Industries, Inc. Pool cleaner
US4618420A (en) * 1984-11-05 1986-10-21 Alopex Industries, Inc. Filter bag for pool cleaners
US4832838A (en) * 1986-07-23 1989-05-23 Damon K. Stone Method and apparatus for water calculation and filtration
US4849024A (en) * 1988-01-07 1989-07-18 Liberty Pool Products S.A. Pool cleaner
US4939806A (en) * 1988-01-07 1990-07-10 Liberty Pool Products S.A. Pool cleaner
US4950393A (en) * 1989-03-29 1990-08-21 Lewis D. Ghiz Operatively stationary pool cleaning apparatus
EP0521208A1 (en) * 1990-06-11 1993-01-07 Sanford Fields Campbell Pool cleaner
US5603135A (en) * 1995-10-31 1997-02-18 Letro Products, Inc. Pool cleaner with replaceable mast
WO1998019029A1 (en) * 1996-10-31 1998-05-07 Letro Products Inc. Swimming pool cleaner
WO1998059135A1 (en) 1997-06-19 1998-12-30 Polaris Pool Systems, Inc. Filter bag for a pool cleaner
USD409341S (en) * 1997-08-29 1999-05-04 Polaris Pool Systems, Inc. Mounting collar for a pool cleaner filter bag
US5933899A (en) * 1996-10-31 1999-08-10 Letro Products, Inc. Low pressure automatic swimming pool cleaner
USD418640S (en) * 1998-10-22 2000-01-04 Polaris Pool Systems, Inc. Pool cleaner
USD421512S (en) * 1996-11-21 2000-03-07 Letro Products, Inc. Automatic swimming pool cleaner
US6094764A (en) * 1998-06-04 2000-08-01 Polaris Pool Systems, Inc. Suction powered pool cleaner
US6099091A (en) * 1998-01-20 2000-08-08 Letro Products, Inc. Traction enhanced wheel apparatus
US6112354A (en) * 1998-10-21 2000-09-05 Polaris Pool Systems, Inc. Suction powered cleaner for swimming pools
US6193885B1 (en) 1998-12-14 2001-02-27 Letro Products, Inc. Pool cleaner debris bag
US6412133B1 (en) 1999-01-25 2002-07-02 Aqua Products, Inc. Water jet reversing propulsion and directional controls for automated swimming pool cleaners
US6502269B1 (en) 1999-10-14 2003-01-07 John A. Balchan Electric powered portable pool cleaner
US20030159723A1 (en) * 2002-01-18 2003-08-28 Hui Joseph Wing-Tak Swimming pool cleaner
US20030177594A1 (en) * 1998-05-22 2003-09-25 Van Der Meyden Hendrikus Johanncs Pool cleaner
US20030205513A1 (en) * 2002-05-03 2003-11-06 Stoltz Gerhardus J. Bag clip for a pool cleaner filter bag
US6665900B2 (en) 2002-03-29 2003-12-23 Polaris Pool Systems Pool cleaner
US20050029177A1 (en) * 2003-08-04 2005-02-10 Peterson David J. Pool cleaner filter bag with zipper closure
US20050040089A1 (en) * 2003-08-20 2005-02-24 Meritt-Powell Michael A. Disposable filter bag for a pool cleaner
US20050040094A1 (en) * 2003-08-20 2005-02-24 Meritt-Powell Michael A. Hose clasp for a pool cleaner filter bag
US20050158195A1 (en) * 2004-01-16 2005-07-21 Polaris Pool Systems, Inc. Motor-driven pump for pool or spa
US20050236310A1 (en) * 2004-04-22 2005-10-27 Polaris Pool Systems, Inc. Disposable filter bag for a pool cleaner
US20060104840A1 (en) * 2002-10-25 2006-05-18 Joel Queirel Electric motor pump for swimming pool maintenance
US20070094817A1 (en) * 2005-11-03 2007-05-03 Polaris Pool Systems, Inc. Automatic pool cleaner
US20080099409A1 (en) * 2006-10-26 2008-05-01 Aquatron Robotic Systems Ltd. Swimming pool robot
FR2925548A1 (en) * 2007-12-21 2009-06-26 Zodiac Pool Care Europ Soc Par IMMERED SURFACE CLEANING APPARATUS COMPRISING A BRUSHING DEVICE DRIVEN BY THE DEVICE DRIVING DEVICES ON THE IMMERED SURFACE
US20110088181A1 (en) * 2009-10-19 2011-04-21 Poolvergnuegen Convertible Pressure/Suction Swimming Pool Cleaner
EP2324170A1 (en) * 2008-09-15 2011-05-25 H Stoltz Vortex turbine cleaner
AU2009208115B2 (en) * 2003-07-10 2012-02-02 Zodiac Pool Care Europe Sas Automatic swimming pool cleaners with shaped floats and water-temperature or-pressure indicators and water-circulation systems incorporating such indicators
US8307485B2 (en) 2008-09-16 2012-11-13 Hayward Industries, Inc. Apparatus for facilitating maintenance of a pool cleaning device
US8434182B2 (en) 1999-01-25 2013-05-07 Aqua Products, Inc. Pool cleaner with high pressure cleaning jets
US8784652B2 (en) 2010-09-24 2014-07-22 Poolvergnuegen Swimming pool cleaner with a rigid debris canister
US8869337B2 (en) 2010-11-02 2014-10-28 Hayward Industries, Inc. Pool cleaning device with adjustable buoyant element
US9593502B2 (en) 2009-10-19 2017-03-14 Hayward Industries, Inc. Swimming pool cleaner
USD787760S1 (en) 2014-11-07 2017-05-23 Hayward Industries, Inc. Pool cleaner
USD787761S1 (en) 2014-11-07 2017-05-23 Hayward Industries, Inc. Pool cleaner
USD789003S1 (en) 2014-11-07 2017-06-06 Hayward Industries, Inc. Pool cleaner
US9677294B2 (en) 2013-03-15 2017-06-13 Hayward Industries, Inc. Pool cleaning device with wheel drive assemblies
USD789624S1 (en) 2014-11-07 2017-06-13 Hayward Industries, Inc. Pool cleaner
US9714518B2 (en) 2015-01-14 2017-07-25 Pentair Water Pool And Spa, Inc. Debris bag with detachable collar
US9745766B2 (en) 2010-05-14 2017-08-29 Pentair Water Pool And Spa, Inc. Biodegradable disposable debris bag
US10066411B2 (en) 2013-08-30 2018-09-04 Hayward Industries, Inc. Swimming pool cleaner
RU2801662C2 (en) * 2019-05-21 2023-08-14 Интекс Маркетинг Лтд. Pool cleaner with removable brush assembly
US11773614B2 (en) 2019-05-21 2023-10-03 Intex Marketing Ltd. Pool cleaner with releasable brush assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1466315A (en) * 1922-06-02 1923-08-28 Thorsen Ludvig Apparatus for scrubbing ships' bottoms below the water level
US2314675A (en) * 1941-09-06 1943-03-23 Automotive Sprinkler Company Lawn sprinkler
US3238549A (en) * 1964-01-13 1966-03-08 Benjamin H Burlin Swimming pool cleaner
US3551930A (en) * 1967-10-04 1971-01-05 Robert R Myers Swimming pool cleaner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1466315A (en) * 1922-06-02 1923-08-28 Thorsen Ludvig Apparatus for scrubbing ships' bottoms below the water level
US2314675A (en) * 1941-09-06 1943-03-23 Automotive Sprinkler Company Lawn sprinkler
US3238549A (en) * 1964-01-13 1966-03-08 Benjamin H Burlin Swimming pool cleaner
US3551930A (en) * 1967-10-04 1971-01-05 Robert R Myers Swimming pool cleaner

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928202A (en) * 1973-07-26 1975-12-23 Peacock Investments Ltd Apparatus for cleaning the surface of a liquid
US4100641A (en) * 1976-06-24 1978-07-18 Pansini Andrew L Swimming pool cleaners
JPH0418325B2 (en) * 1983-08-15 1992-03-27 Aropetsukusu Ind Inc
WO1985000903A1 (en) * 1983-08-15 1985-02-28 Autarkic Flow Controls Timed flow control valve assembly
US4522221A (en) * 1983-08-15 1985-06-11 Autarkic Flow Controls Timed flow control valve assembly
JPS61500084A (en) * 1983-08-15 1986-01-16 アロペックス インダストリーズ インコーポレーテッド timed flow control valve assembly
US4558479A (en) * 1984-01-26 1985-12-17 Alopex Industries, Inc. Pool cleaner
US4589986A (en) * 1984-01-26 1986-05-20 Alopex Industries, Inc. Pool cleaner
AU576547B2 (en) * 1984-01-26 1988-09-01 Polaris Pool Systems, Inc., a Dalaware Corporation Pool cleaner
US4575423A (en) * 1984-11-01 1986-03-11 Alopex Industries, Inc. Debris collection bag for pool cleaners
US4618420A (en) * 1984-11-05 1986-10-21 Alopex Industries, Inc. Filter bag for pool cleaners
US4832838A (en) * 1986-07-23 1989-05-23 Damon K. Stone Method and apparatus for water calculation and filtration
US4849024A (en) * 1988-01-07 1989-07-18 Liberty Pool Products S.A. Pool cleaner
US4939806A (en) * 1988-01-07 1990-07-10 Liberty Pool Products S.A. Pool cleaner
US4950393A (en) * 1989-03-29 1990-08-21 Lewis D. Ghiz Operatively stationary pool cleaning apparatus
EP0521208A1 (en) * 1990-06-11 1993-01-07 Sanford Fields Campbell Pool cleaner
US5603135A (en) * 1995-10-31 1997-02-18 Letro Products, Inc. Pool cleaner with replaceable mast
US5893188A (en) * 1996-10-31 1999-04-13 Letro Products, Inc. Automatic swimming pool cleaner
US5933899A (en) * 1996-10-31 1999-08-10 Letro Products, Inc. Low pressure automatic swimming pool cleaner
US6003184A (en) * 1996-10-31 1999-12-21 Letro Products, Inc. Automatic swimming pool cleaner
WO1998019029A1 (en) * 1996-10-31 1998-05-07 Letro Products Inc. Swimming pool cleaner
USD421512S (en) * 1996-11-21 2000-03-07 Letro Products, Inc. Automatic swimming pool cleaner
WO1998059135A1 (en) 1997-06-19 1998-12-30 Polaris Pool Systems, Inc. Filter bag for a pool cleaner
US5863425A (en) * 1997-06-19 1999-01-26 Polaris Pool Systems Filter bag for a pool cleaner
USD409341S (en) * 1997-08-29 1999-05-04 Polaris Pool Systems, Inc. Mounting collar for a pool cleaner filter bag
US6099091A (en) * 1998-01-20 2000-08-08 Letro Products, Inc. Traction enhanced wheel apparatus
US20030177594A1 (en) * 1998-05-22 2003-09-25 Van Der Meyden Hendrikus Johanncs Pool cleaner
US20060207041A1 (en) * 1998-05-22 2006-09-21 Van Der Meyden Hendrikus J Pool cleaner
US6094764A (en) * 1998-06-04 2000-08-01 Polaris Pool Systems, Inc. Suction powered pool cleaner
EP0969167A2 (en) 1998-07-01 2000-01-05 Letro Products Inc. Swimming pool cleaner
US6112354A (en) * 1998-10-21 2000-09-05 Polaris Pool Systems, Inc. Suction powered cleaner for swimming pools
USD418640S (en) * 1998-10-22 2000-01-04 Polaris Pool Systems, Inc. Pool cleaner
US6193885B1 (en) 1998-12-14 2001-02-27 Letro Products, Inc. Pool cleaner debris bag
US7165284B2 (en) * 1999-01-25 2007-01-23 Aqua Products, Inc. Water jet reversing propulsion and directional controls for automated swimming pool cleaners
US8434182B2 (en) 1999-01-25 2013-05-07 Aqua Products, Inc. Pool cleaner with high pressure cleaning jets
US20070101521A1 (en) * 1999-01-25 2007-05-10 Giora Erlich Water jet reversing propulsion and directional controls for automated swimming pool cleaners
US6412133B1 (en) 1999-01-25 2002-07-02 Aqua Products, Inc. Water jet reversing propulsion and directional controls for automated swimming pool cleaners
US7827643B2 (en) * 1999-01-25 2010-11-09 Aqua Products, Inc. Automated swimming pool cleaner with stationary projecting pivot member
US20040168838A1 (en) * 1999-01-25 2004-09-02 Giora Erlich Water jet reversing propulsion and directional controls for automated swimming pool cleaners
US9650799B2 (en) 1999-01-25 2017-05-16 Aqua Products, Inc. Automated swimming pool cleaner having an angled jet drive propulsion system
US9650798B2 (en) 1999-01-25 2017-05-16 Aqua Products, Inc. Automated swimming pool cleaner having an angled jet drive propulsion system
US9512630B2 (en) 1999-01-25 2016-12-06 Aqua Products, Inc. Automated swimming pool cleaner having and angled jet drive propulsion system
US7900308B2 (en) * 1999-01-25 2011-03-08 Aqua Products, Inc Water jet reversing propulsion and directional controls for automated swimming pool cleaners
US20110056031A1 (en) * 1999-01-25 2011-03-10 Giora Erlich Automated swimming pool cleaner with projecting pivot members for changing direction of movement at an adjacent side wall of a pool
US6502269B1 (en) 1999-10-14 2003-01-07 John A. Balchan Electric powered portable pool cleaner
US7213287B2 (en) 2002-01-18 2007-05-08 Smartpool, Inc. Swimming pool cleaner
US20030159723A1 (en) * 2002-01-18 2003-08-28 Hui Joseph Wing-Tak Swimming pool cleaner
US20070192970A1 (en) * 2002-01-18 2007-08-23 Hui Joseph W Swimming pool cleaner
US20070192971A1 (en) * 2002-01-18 2007-08-23 Hui Joseph W Swimming pool cleaner
US6665900B2 (en) 2002-03-29 2003-12-23 Polaris Pool Systems Pool cleaner
US6740233B2 (en) 2002-05-03 2004-05-25 Polaris Pool Systems, Inc. Bag clip for a pool cleaner filter bag
US20030205513A1 (en) * 2002-05-03 2003-11-06 Stoltz Gerhardus J. Bag clip for a pool cleaner filter bag
US7828530B2 (en) * 2002-10-25 2010-11-09 Financiere Piscine Equipement Electric motor pump for swimming pool maintenance
US20060104840A1 (en) * 2002-10-25 2006-05-18 Joel Queirel Electric motor pump for swimming pool maintenance
AU2009208115B9 (en) * 2003-07-10 2012-05-24 Zodiac Pool Care Europe Sas Automatic swimming pool cleaners with shaped floats and water-temperature or-pressure indicators and water-circulation systems incorporating such indicators
AU2009208115B2 (en) * 2003-07-10 2012-02-02 Zodiac Pool Care Europe Sas Automatic swimming pool cleaners with shaped floats and water-temperature or-pressure indicators and water-circulation systems incorporating such indicators
US20050029177A1 (en) * 2003-08-04 2005-02-10 Peterson David J. Pool cleaner filter bag with zipper closure
US7462278B2 (en) 2003-08-20 2008-12-09 Zodiac Pool Care, Inc. Hose clasp for a pool cleaner filter bag
US7029583B2 (en) 2003-08-20 2006-04-18 Polaris Pool Systems Inc. Hose clasp for a pool cleaner filter bag
US20050040094A1 (en) * 2003-08-20 2005-02-24 Meritt-Powell Michael A. Hose clasp for a pool cleaner filter bag
US20050040089A1 (en) * 2003-08-20 2005-02-24 Meritt-Powell Michael A. Disposable filter bag for a pool cleaner
US7208083B2 (en) 2003-08-20 2007-04-24 Zodiac Pool Care, Inc. Disposable filter bag for a pool cleaner
US20060124522A1 (en) * 2003-08-20 2006-06-15 Meritt-Powell Michael A Hose clasp for a pool cleaner filter bag
US7001159B2 (en) 2004-01-16 2006-02-21 Polaris Pool Systems, Inc. Motor-driven pump for pool or spa
US20060177325A1 (en) * 2004-01-16 2006-08-10 Peterson David J Jr Motor-driven pump for pool or spa
US20050158195A1 (en) * 2004-01-16 2005-07-21 Polaris Pool Systems, Inc. Motor-driven pump for pool or spa
US20090100589A1 (en) * 2004-01-16 2009-04-23 Peterson Jr David J Motor-driven pump for pool or spa
US7273546B2 (en) 2004-04-22 2007-09-25 Zodiac Pool Care, Inc. Disposable filter bag for a pool cleaner
US20050236310A1 (en) * 2004-04-22 2005-10-27 Polaris Pool Systems, Inc. Disposable filter bag for a pool cleaner
US20070094817A1 (en) * 2005-11-03 2007-05-03 Polaris Pool Systems, Inc. Automatic pool cleaner
US7690066B2 (en) 2005-11-03 2010-04-06 Zodiac Pool Care, Inc. Automatic pool cleaner
US20080099409A1 (en) * 2006-10-26 2008-05-01 Aquatron Robotic Systems Ltd. Swimming pool robot
WO2009081036A2 (en) * 2007-12-21 2009-07-02 Zodiac Pool Care Europe Apparatus for cleaning a submerged surface including a brushing device driven by members for driving the apparatus on the submerged surface
FR2925548A1 (en) * 2007-12-21 2009-06-26 Zodiac Pool Care Europ Soc Par IMMERED SURFACE CLEANING APPARATUS COMPRISING A BRUSHING DEVICE DRIVEN BY THE DEVICE DRIVING DEVICES ON THE IMMERED SURFACE
US20110000030A1 (en) * 2007-12-21 2011-01-06 Philippe Pichon Apparatus for cleaning a submerged surface including a brushing device driven by members for driving the apparatus on the submerged surface
US8393029B2 (en) 2007-12-21 2013-03-12 Zodiac Pool Care Europe Apparatus for cleaning a submerged surface including a brushing device driven by members for driving the apparatus on the submerged surface
WO2009081036A3 (en) * 2007-12-21 2009-09-11 Zodiac Pool Care Europe Apparatus for cleaning a submerged surface including a brushing device driven by members for driving the apparatus on the submerged surface
EP2324170A1 (en) * 2008-09-15 2011-05-25 H Stoltz Vortex turbine cleaner
EP2324170A4 (en) * 2008-09-15 2014-10-01 H Stoltz Vortex turbine cleaner
US8343339B2 (en) 2008-09-16 2013-01-01 Hayward Industries, Inc. Apparatus for facilitating maintenance of a pool cleaning device
US8307485B2 (en) 2008-09-16 2012-11-13 Hayward Industries, Inc. Apparatus for facilitating maintenance of a pool cleaning device
US8402585B2 (en) * 2009-10-19 2013-03-26 Poolvergnuegen Convertible pressure/suction swimming pool cleaner
US9593502B2 (en) 2009-10-19 2017-03-14 Hayward Industries, Inc. Swimming pool cleaner
US20110088181A1 (en) * 2009-10-19 2011-04-21 Poolvergnuegen Convertible Pressure/Suction Swimming Pool Cleaner
US9784007B2 (en) 2009-10-19 2017-10-10 Hayward Industries, Inc. Swimming pool cleaner
US9758979B2 (en) 2009-10-19 2017-09-12 Hayward Industries, Inc. Swimming pool cleaner
US9745766B2 (en) 2010-05-14 2017-08-29 Pentair Water Pool And Spa, Inc. Biodegradable disposable debris bag
US8784652B2 (en) 2010-09-24 2014-07-22 Poolvergnuegen Swimming pool cleaner with a rigid debris canister
US8869337B2 (en) 2010-11-02 2014-10-28 Hayward Industries, Inc. Pool cleaning device with adjustable buoyant element
US9677294B2 (en) 2013-03-15 2017-06-13 Hayward Industries, Inc. Pool cleaning device with wheel drive assemblies
US10066411B2 (en) 2013-08-30 2018-09-04 Hayward Industries, Inc. Swimming pool cleaner
US10876318B2 (en) 2013-08-30 2020-12-29 Hayward Industries, Inc. Swimming pool cleaner
US10947750B2 (en) 2013-08-30 2021-03-16 Hayward Industries, Inc. Swimming pool cleaner
USD789624S1 (en) 2014-11-07 2017-06-13 Hayward Industries, Inc. Pool cleaner
USD789003S1 (en) 2014-11-07 2017-06-06 Hayward Industries, Inc. Pool cleaner
USD787761S1 (en) 2014-11-07 2017-05-23 Hayward Industries, Inc. Pool cleaner
USD787760S1 (en) 2014-11-07 2017-05-23 Hayward Industries, Inc. Pool cleaner
US9714518B2 (en) 2015-01-14 2017-07-25 Pentair Water Pool And Spa, Inc. Debris bag with detachable collar
RU2801662C2 (en) * 2019-05-21 2023-08-14 Интекс Маркетинг Лтд. Pool cleaner with removable brush assembly
US11773614B2 (en) 2019-05-21 2023-10-03 Intex Marketing Ltd. Pool cleaner with releasable brush assembly

Similar Documents

Publication Publication Date Title
US3822754A (en) Automatic swimming pool cleaner
US3972339A (en) Automatic swimming pool cleaner
US3936899A (en) Automatic swimming pool cleaner
US6942790B1 (en) Open-air filtration cleaning device for pools and hot tubs
US5893188A (en) Automatic swimming pool cleaner
US5985156A (en) Automatic swimming pool cleaning system
US5933899A (en) Low pressure automatic swimming pool cleaner
US3860518A (en) Apparatus and method for cleaning swimming pools
US3321787A (en) Swimming pool cleaning means
US4040864A (en) Device and method for cleaning leaves and debris from swimming pools
US6601255B1 (en) Pool cleaner
US6090219A (en) Positive pressure automatic swimming poor cleaning system
EP2769034B1 (en) Pool cleaner with multi-stage venturi vacuum assembly
USRE26741E (en) Swimming pool cleaning means
US3790979A (en) Submarine type, self-propelled suction sweeper
AU2000253018B2 (en) Swimming pool pressure cleaner with internal steering mechanism
EP0835357B1 (en) Automatic swimming pool cleaning system
US4141101A (en) Self propelled drivehead for automatic swimming pool cleaner
CA1061062A (en) Automatic swimming pool cleaner
CA1116819A (en) Automatic swimming pool cleaner
WO1999033582A1 (en) Positive pressure automatic swimming pool cleaning system
CA2330382C (en) Pool cleaner
CA1146709A (en) Automatic swimming pool cleaner
CA1084216A (en) Automatic swimming pool cleaner
JPH06285448A (en) Under water cleaning robot