US6789110B1 - Information and control console for use with a network gateway interface - Google Patents

Information and control console for use with a network gateway interface Download PDF

Info

Publication number
US6789110B1
US6789110B1 US09/541,877 US54187700A US6789110B1 US 6789110 B1 US6789110 B1 US 6789110B1 US 54187700 A US54187700 A US 54187700A US 6789110 B1 US6789110 B1 US 6789110B1
Authority
US
United States
Prior art keywords
information
user
control console
network
host computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/541,877
Inventor
Joel E. Short
Barry R. Robbins
Josh J. Goldstein
Andrew P. Wandler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gate Worldwide Holdings LLC
Original Assignee
Nomadix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
US case filed in California Central District Court litigation Critical https://portal.unifiedpatents.com/litigation/California%20Central%20District%20Court/case/2%3A09-cv-08441 Source: District Court Jurisdiction: California Central District Court "Unified Patents Litigation Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
First worldwide family litigation filed litigation https://patents.darts-ip.com/?family=26857545&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US6789110(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nomadix Inc filed Critical Nomadix Inc
Priority to US09/541,877 priority Critical patent/US6789110B1/en
Assigned to NOMADIX, INC. reassignment NOMADIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOLDSTEIN, JOSH J., ROBBINS, BARRY R., SHORT, JOEL E., WANDLER, ANDREW P.
Priority to AU10885/01A priority patent/AU1088501A/en
Priority to CA2388601A priority patent/CA2388601C/en
Priority to IL14918800A priority patent/IL149188A0/en
Priority to ES00972188T priority patent/ES2269195T3/en
Priority to PCT/US2000/028541 priority patent/WO2001031883A2/en
Priority to AT00972188T priority patent/ATE335340T1/en
Priority to KR1020027005059A priority patent/KR100559357B1/en
Priority to CNB008159823A priority patent/CN1233129C/en
Priority to JP2001533716A priority patent/JP3880856B2/en
Priority to DE60029819T priority patent/DE60029819T2/en
Priority to EP00972188A priority patent/EP1234425B1/en
Priority to CA2737890A priority patent/CA2737890A1/en
Assigned to COMERICA BANK-CALIFORNIA reassignment COMERICA BANK-CALIFORNIA SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOMADIX, INC.
Priority to IL149188A priority patent/IL149188A/en
Assigned to NOMADIX, INC. reassignment NOMADIX, INC. REASSIGNMENT AND RELEASE OF SECURITY INTEREST Assignors: COMERICA BANK, SUCCESSOR BY MERGER TO COMERICA BANK-CALIFORNIA
Publication of US6789110B1 publication Critical patent/US6789110B1/en
Application granted granted Critical
Assigned to NTT DOCOMO, INC. reassignment NTT DOCOMO, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOMADIX, INC.
Assigned to NTT DOCOMO, INC. reassignment NTT DOCOMO, INC. MODIFICATION TO PATENT SECURITY AGREEMENT Assignors: NOMADIX, INC.
Assigned to GATE WORLDWIDE HOLDINGS LLC reassignment GATE WORLDWIDE HOLDINGS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOMADIX, INC.
Assigned to GATE WORLDWIDE HOLDINGS LLC reassignment GATE WORLDWIDE HOLDINGS LLC ASSIGNMENT OF PATENT SECURITY AGREEMENT Assignors: NTT DOCOMO, INC.
Assigned to Knobbe, Martens, Olson & Bear, LLP reassignment Knobbe, Martens, Olson & Bear, LLP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOMADIX, INC.
Assigned to NOMADIX, INC. reassignment NOMADIX, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: Knobbe, Martens, Olson & Bear, LLP
Assigned to NOMADIX, INC. reassignment NOMADIX, INC. QUITCLAIM Assignors: GATE WORLDWIDE HOLDINGS LLC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1432Metric aspects
    • H04L12/1439Metric aspects time-based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/287Remote access server, e.g. BRAS
    • H04L12/2876Handling of subscriber policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0892Network architectures or network communication protocols for network security for authentication of entities by using authentication-authorization-accounting [AAA] servers or protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • H04L67/30Profiles
    • H04L67/306User profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/75Indicating network or usage conditions on the user display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources

Definitions

  • the present invention relates generally to a network gateway interface and, more particularly, to an information and control console for use with a network gateway interface.
  • a computer In order for a computer to function properly in a network environment, the computer must be appropriately configured. Among other things, this configuration process establishes the protocol and other parameters by which the computer transmits and receives data.
  • a plurality of computers are networked to create a local area network (LAN).
  • LAN local area network
  • each computer In the LAN, each computer must be appropriately configured in order to exchange data over the network. Since most networks are customized to meet a unique set of requirements, computers that are part of different networks are generally configured in different manners in order to appropriately communicate with their respective networks.
  • employer's network i.e., the enterprise network.
  • the employee may connect the portable computer to the network maintained by an airport, a hotel, a cellular telephone network operator or any other locale in order to access the enterprise network, the Internet or some other on-line service.
  • the portable computer is also commonly brought to the employee's residence where it is used to access various networks, such as, the enterprise network, a home network, the Internet and the like. Since these other networks are configured somewhat differently, however, the portable computer must also be reconfigured in order to properly communicate with these other networks. Typically, this configuration is performed by the user each time that the portable computer is connected to a different network. As will be apparent, this repeated reconfiguration of the portable computer is not only quite time consuming, but is also prone to errors. The reconfiguration procedure may even be beyond the capabilities of many users or in violation of their employer's information technology (IT) policy.
  • IT information technology
  • the gateway interface serves as an interface connecting the user/subscriber to a number of networks or other online services.
  • the gateway interface can serve as a gateway to the Internet, the enterprise network, or other networks and/or on-line services.
  • the gateway interface automatically adapts to a host, in order that it may communicate with the new network in a manner that is transparent both to the user/subscriber and the new network.
  • the host can communicate via the new network, such as the network at a hotel, at home, at an airport, or any other location, in order to access other networks, such as the enterprise network, or other online services, such as the internet.
  • the transient user/subscriber and more specifically the remote or laptop user, benefits from being able to access a myriad of computer networks without having to undergo the time-consuming and all-too-often daunting task of reconfiguring their host in accordance with network specific configurations.
  • the network service provider benefits from avoiding “on-site” visits and/or technical support calls from the user who is unable to properly re-configure the portable computer.
  • the gateway interface is capable of providing more efficient network access and network maintenance to the user/subscriber and the network operator.
  • a gateway interface is also instrumental in providing the user/subscriber broadband network access that can be tailored to the user's needs.
  • the remote user is concerned with being able to acquire network access and levels of service in the most cost-effective manner.
  • the gateway interface administrator desires the capability to be able to offer the user/subscriber numerous different service, routing, and billing rate options.
  • the remote user in a hotel environment may desire a network subscription for the duration of their hotel stay while the user in an airport may desire a network subscription for the duration of their layover or until their scheduled flight departs.
  • a user may desire a certain level of service based on bandwidth concerns and the need for higher or lower data transfer rates.
  • the user/subscriber who is accessing a network for the purpose of viewing text may desire a lower bandwidth service level that meets their particular needs, however, another user/subscriber who is accessing a network for the purpose of downloading files may desire a higher bandwidth service level capable of transferring data at higher speeds.
  • the network service provider benefits from being able to offer various service, routing and billing options to the user/subscriber.
  • the network service provider is able to minimize network congestion, i.e. not all user/subscribers are tied to one high speed (and high cost) service. Lessening network traffic is beneficial for attracting new subscribers and insuring that pre-existing subscribers maintain status quo. From an economic standpoint, differentiated service quality and usage based pricing will promote the use and deployment of broadband network access and enhance the revenue models of the network service providers. No longer will the user/subscriber be tied to a flat-rate billing scheme that offers a single level of service quality.
  • the gateway interface administrator needs to be able to provide the user/subscriber with real-time information pertaining to the network session(s) that the user currently has on-going.
  • the gateway administrator would benefit from being able to provide the user/subscriber with constant or intermittent data related to the network sessions currently on-going, the duration of those sessions, the bandwidth currently being used, the number of bytes that have been transferred and any other information related to the current network session.
  • the user/subscriber has the capability to monitor and make the appropriate adjustments to the billing structure and/or service levels related to the network sessions that he or she currently has on going.
  • the user/subscriber may choose to stop or shutdown connections (and thus billing) to those networks not currently being utilized.
  • the user/subscriber may monitor the duration of the network session and determine that a longer subscription is necessary or the user may observe the bandwidth currently used and determine that the current application warrants an increase or decrease in bandwidth.
  • the ability to provide this real-time information to the user is especially important in light of the fact that the typical, infrequent gateway interface user will be unfamiliar with billing and service structure and, particularly, the capability to change these features on-the-fly.
  • the ability to offer flexible service quality, routing options and billing plans ultimately can lead to less overall network congestion.
  • the current broadband standard of flat rate billing and one-dimensional service and routing options force the network service provider in to effectively transmitting all network data at maximum bandwidth.
  • the service provider is able to accommodate more user/subscribers and provide those user/subscribers with a more effective network.
  • the ability to lessen congestion is even more apparent if the network service provider can offer the user/subscriber the capability to make changes to the service quality, routing and billing structure while the network session is on going.
  • the network service provider may be able to increase the volume of user/subscribers accessing the network.
  • the present invention comprises an information and control console that is administered through a gateway interface.
  • the gateway interface is capable of transparently connecting the user/subscriber to multiple networks without the need to reconfigure the user's host computer.
  • the information and control console allows the gateway administrator, the Internet service provider (ISP) and/or application service provider (ASP) to provide real-time information to the user/subscriber.
  • the information provided to the user in the information and control console may be user-specific information related to the current network session, the current location of the user's host, user-specific profile type information or the like.
  • the user/subscriber can then act on the data provided to dynamically change the features of a current network session.
  • the information and control console can provide for information or access to information through appropriate links. In many instances, the information provided or the links to information may be user-specific information.
  • the basis or “know-how” for the user-specific data can be provided by the network service provider (i.e. user profiles in the network database) or through direct user inputs.
  • the information and control console provides the gateway administrator, the ISP and/or the ASP the capability to provide the user with limitless forms of information and networking options.
  • the gateway administrator can provide the user with network session monitoring information, or it can provide for marketing capabilities through advertising medium or it can provide the gateway administrator with a means to poll or survey users.
  • the ISP and/or the ASP can provide the user with user-specific targeted marketing and advertising information or various service delivery platforms. These examples of the types of information that an information and control console may provide should not be construed as limiting.
  • the information and control console may be configured by the gateway administrator, network provider or user/subscriber to provide a wide variety of information.
  • an information and control console is provided to a user/subscriber during a network session.
  • the information and control console may include information and links to information in response to configuration of the panel by the gateway administrator or the subscriber/user.
  • the information that is provided for in the information and control console will be user-specific data assembled from user profiles in network databases or from direct user/subscriber inputs.
  • the information that is provided to the user/subscriber via the information and control console may include monitoring of the network session, polling/surveying the user/subscriber, user-tailored advertisements and information on other services/features offered by the gateway administrator, the network provider and/or the application service provider.
  • the information and control console may include network monitoring attributes such as, identifying the network session(s) currently in-use, identifying the duration of network sessions currently in-use, identifying the bandwidth currently available for a specific network session and identifying the current amount of bytes received and/or sent for a specific network session.
  • network monitoring attributes such as, identifying the network session(s) currently in-use, identifying the duration of network sessions currently in-use, identifying the bandwidth currently available for a specific network session and identifying the current amount of bytes received and/or sent for a specific network session.
  • a method for communicating to a network user predefined information during an ongoing networking session.
  • the method comprises of the steps of establishing computer network access to a user s host through a gateway interface that has the capacity to transparently configure a host to meet the requirements of available networks.
  • the gateway interface communicates with databases associated with the gateway interface to determine user-specific data.
  • the user-specific data may include user-profiled information, host-location-related data, user-specific network monitoring information or the like. This user-specific data is then used to create information and control console packets at the gateway interface, which are then sent to the user's host.
  • the information and control console packets reach the host and generate information and control consoles on a monitor of the user's host.
  • the information and control consoles will comprise data that typically is related to a user's profile, the chosen billing scheme, the chosen service level, the location from which the user desires access or any other information deemed pertinent by the gateway administrator or user/subscriber.
  • FIG. 1 is a block diagram of a computer system that includes a gateway interface for automatically configuring one or more computers to communicate via the gateway interface with other networks or other online services.
  • FIGS. 2-7 are illustrations of various examples of information and control consoles, in accordance with an embodiment of the present invention.
  • FIG. 8 is a flowchart diagram of a method for communicating to a network user data during an ongoing network session, in accordance with an embodiment of the present invention.
  • the computer network system 10 that includes a gateway interface 12 is depicted in block diagram form.
  • the computer network system typically includes a plurality of hosts 14 that access the computer network system in order to gain access to other networks or other online services.
  • the hosts can be plugged into ports that are located in different rooms of a hotel or a multi-dwelling residence.
  • the hosts can be plugged into ports in an airport, an arena, or the like.
  • the computer network system includes a gateway interface that provides for an access point between the plurality of computers and the various networks or other online services. Most commonly, the gateway interface is located near the hosts at a relatively low position in the structure of the overall network. (i.e.
  • the gateway interface will be located within the hotel, multi-unit residence, airport, etc.) However, the gateway interface can be located at a higher position in the overall network structure such as at a Point of Presence (PoP) within a Network Operating Center (NOC), if so desired.
  • PoP Point of Presence
  • NOC Network Operating Center
  • the gateway interface can be physically embodied in many different fashions, the gateway interface typically includes a controller and a memory device in which software is stored that defines the operational characteristics of the gateway interface.
  • the gateway interface can be embedded within another network device, such as the access controller or a router, or the software that defines the functioning of the gateway interface can be stored on a PCMCIA card that can be inserted into the computer in order to automatically reconfigure the computer to communicate with a different computer system.
  • the computer network system 10 also typically includes an access controller 16 positioned between the hosts 14 and the gateway interface 12 for multiplexing the signals received from the plurality of computers onto a link to the gateway interface.
  • the access controller can be configured in different manners.
  • the access controller can be a digital subscriber line access module (DSLAM) for signals transmitted via regular telephone lines, a cable head end for signals transmitted via coaxial cables, a wireless access point (WAP) for signals transmitted via a wireless network, a cable modem termination system (CMPS), a switch or the like.
  • DSLAM digital subscriber line access module
  • WAP wireless access point
  • CMPS cable modem termination system
  • the computer system typically includes one or more routers 18 and/or servers (not shown in FIG.
  • the gateway interface typically establishes a link with one or more routers.
  • the routers in turn, establish links with the servers of other networks or other online service providers, such as internet service providers, based upon the subscriber's selection.
  • the gateway interface 12 is specifically designed to adapt to the configuration of each of the hosts 14 that log onto the computer network system 10 in a manner that is transparent to the subscriber and the computer network.
  • DHCP dynamic host configuration protocol
  • an IP address is assigned to the computer that is logging onto the computer network through communication with the gateway interface.
  • the DHCP service can be provided by an external DHCP server 24 or it can be provided by an internal DHCP server located in unison with the gateway interface.
  • the gateway interface Upon opening their web browser or otherwise attempting to access an on-line service, the gateway interface will direct the subscriber to enter some form of an identifier such as their ID and password.
  • the gateway interface will be able to automatically detect this information upon connection of the computer to the network or any attempt to log in.
  • the gateway interface determines if the subscriber is entitled to access the computer system, the level of access and/or the type of services to which the subscriber is entitled according to an Authentication, Authorization and Accounting (AAA) procedure.
  • AAA Authentication, Authorization and Accounting
  • An AAA server which is a database of subscriber records, may be remote to the gateway interface or the AAA database may be incorporated into the physical embodiment housing the gateway interface.
  • the gateway interface typically presents new subscribers with a home page or control panel that identifies, among other things, the online services or other computer networks that are accessible via the gateway interface.
  • the home page presented by the gateway interface can provide information regarding the current parameters or settings that will govern the access provided to the particular subscriber. As such, the gateway administrator can readily alter the parameters or other settings in order to tailor the service according to their particular application.
  • gateway administrator will charge the subscriber a higher rate for their service.
  • a subscriber may elect to increase the transfer rate at which signals are transmitted across the computer network and pay a correspondingly higher price for the expedited service.
  • the home page also permits the subscriber to select the computer network 20 or other online services 22 that the subscriber wishes to access.
  • the subscriber can access the enterprise network on which the computer is typically resident.
  • the subscriber can access the internet or other on-line services.
  • the gateway interface establishes an appropriate link via one or more routers 18 to the desired computer network or online service.
  • the gateway interface 12 generally performs a packet translation function that is transparent to the user/subscriber and the network.
  • the gateway interface changes attributes within the packet coming from the user/subscriber, such as the source address, checksum, and application specific parameters, to meet the criteria of the network to which the user/subscriber has accessed.
  • the outgoing packet includes an attribute that will direct all incoming packets from the accessed network to be routed through the gateway interface.
  • the inbound traffic from the computer network or other online service that is routed through the gateway interface undergoes a translation function at the gateway interface so that the packets are properly formatted for the user/subscriber's host.
  • the packet translation process that takes place at the gateway interface is transparent to the host, which appears to send and receive data directly from the accessed computer network. Additional information regarding the translation function is provided by U.S. patent application Ser. No. 08/816,714, assigned to Nomadix L.L.C, the assignee of the present invention and previously incorporated by reference as if setforth herein.
  • the gateway interface By implementing the gateway interface as an intermediary between the user/subscriber and the computer network or other online service, the user/subscriber will eliminate the need to re-configure their host 12 upon accessing subsequent networks.
  • the gateway interface implements an information and control console.
  • the information and control console is communicated to the host computer from the gateway interface and provides the user/subscriber with information.
  • the information that is provided to the user/subscriber in the information and control console may include information of various types, forms and content.
  • the information that is provided for in the information and control console may be static information or dynamic information.
  • the information provided in the information and control console may be user specific, site specific or gateway interface specific. In the user-specific model the data may be based on information found in network databases or information provided by the user/subscriber.
  • the network databases may include user profiles that have been assembled by querying the user or by logging the networks and sites visited by the user.
  • the information provided for in the information and control console may be network monitoring information, for marketing purposes or any other conceivable purpose that the gateway administrator or user/subscriber deems appropriate.
  • the information and control console may include advertising tailored to the specific needs of the user/subscriber.
  • the gateway interface would be capable of tailoring the information based upon the current location of the user s host, user profiles in the network, gateway administrator concerns or the like. Typically, this information is provided for in the information and control console in the form of links to other available networks, Internet sites, intranets or similar networking possibilities.
  • the gateway administrator can offer the user/subscriber access to other networks and services without the user/subscriber having to register for or be approved for a subscription to these other networks or services.
  • the gateway administrator can act as a broker for these other networks and services and, thereby, offer the user/subscriber short-term access to these networks and services at reduced rates.
  • the information and control console may also incorporate surveys or links to surveys to provide the gateway administrator or network provider with beneficial statistical data.
  • the user/subscriber who responds to the surveys may be rewarded with network access credit or upgraded quality.
  • the gateway administrator can offer additional services to the user/subscriber by way of the information and control console or links to these services may be offered on the information and control console.
  • These services offered by the network service provider are not limited to the services related to the network connection. For example, a hotel may desire to offer the user/subscriber in-room food service or a multi-unit dwelling may want to offer house cleaning service.
  • the information and control console may also comprise network monitoring information related to the status of the current network session.
  • this information may include, current billing structure data, the category/level of service that the user/subscriber has chosen, the bandwidth being provided to the user, the bytes of information currently sent or received, the current status of network connection(s) and the duration of the existing network connection(s). It is to be understood, by those skilled in the art to which this invention relates that all conceivable useful information relating to the current network session could be displayed to the user/subscriber in a multitude of combinations as defined by the user/subscriber and/or the gateway administrator.
  • the gateway administrator will have the capability to dynamically change the information supplied in the information and control console based on many factors, including the location of the user/subscriber, the profile of the user subscriber and the chosen billing scheme and service level.
  • the information provided in the information and control console may prompt the user/subscriber to return to the provisioning page to adjust any number of specific parameters, such as the billing scheme, the routing, the level of service and/or other user-related parameters or the user may be able to adjust the billing scheme and service level by responding directly to the information and control console.
  • the information and control console may be implemented with an object-oriented programming language such as Java developed by Sun Microsystems, Incorporated of Mountain View, Calif.
  • the code that defines the information and control console is embodied within the gateway interface, while the display monitor and the driver are located with the host computer's that are in communication with the gateway interface.
  • the object oriented programming language that is used should be capable of creating executable content (i.e. self-running applications) that can be easily distributed through networking environments.
  • the object oriented programming language should be capable of creating special programs, typically referred to as applets that can be incorporated in web pages to make them interactive. In this invention the applets take the form of the information and control consoles.
  • the chosen object-oriented programming language would require that a compatible web browser be implemented to interpret and run the information and control console. It is also possible to implement the information and control console using other programming languages, such as HTML; however, these languages may not be able to provide all the dynamic capabilities that languages, such as Java provide.
  • the gateway administrator or the user/subscriber may have control over how frequently an information and control console is invoked by the gateway interface so that it appears on the monitor of the user/subscriber.
  • the gateway interface will be configured to invoke an initial information and control console to the user/subscriber's host a short period of time after the user has gained access to a network service provided by the gateway administrator.
  • the information and control console may be invoked automatically in response to predetermined conditions. An example being, invoking the information and control console in response to the user/subscriber's imminent subscription expiration.
  • the information and control console may also be generated and controlled by the user/subscriber.
  • the user/subscriber can choose to have the information and control console visual throughout the network session or the pop-up control can be minimized or deleted. It is also possible for the gateway administer to configure the information and control console so that it can not be deleted or the user/ subscriber can be rewarded (e.g. additional access time or the like) for maintaining a visible pop-up control throughout the network session.
  • the information and control console is configured to send heartbeat packets back to the gateway interface at predetermined specified intervals to let the gateway know that the user/subscriber still has an active, information and control console in use or at the user's disposal. If the gateway interface does not receive a heartbeat from the host after a predetermined period of time, it will assume that the user has deleted the information and control console or the information and control console has otherwise failed. In the instance where a heartbeat is not received by the gateway interface after a predetermined time period, the gateway interface will re-send a new updated information and control console to the user/subscriber.
  • the gateway interface will be able to insure that the user/subscriber always has ready access to the user-related information provided by the information and control console.
  • the user/subscriber will also have the capability to locate the information and control console anywhere within the viewable area of the computer monitor.
  • the physical embodiment of the information and control console can be modified in an infinite number of ways to suit either the user or the gateway administrator. For example, the panel size, color, graphics, location, form of read out (digital vs. analog), language, scales (e.g. metric vs. U.S.) can all be varied, as well as the rate at which information is provided.
  • the information and control console may be configured by the user or gateway administrator such that the outlining panel and background of the console are transparent and, thus, only the linking buttons and other information are visible on the monitor.
  • the information and control console will only be actively sent from the gateway interface if the user/subscriber is accessing a network provided service, such as broadband Internet access, that is provided by the gateway administrator. If the user chooses to stop using the network service, such as broadband Internet access, they can close the application and the information and control console will correspondingly be inactive.
  • the gateway interface recognizes that the network provided service has been disabled and stops sending information and control console packets to the host. Upon the user/subscriber re-activating the network provided service, the gateway interface will recognize the need to send a new information and control console and begin recognizing “heartbeats” coming from the information and control console.
  • the gateway interface it also possible to configure the gateway interface to send information and control console packets to the user/subscriber who is not currently activating a network service or currently involved in a networking session.
  • the host For offline sending of information and control console packets the host must be in networking communication with the gateway interface.
  • FIGS. 2-6 are depictions of various examples of information and control consoles providing for network session data. These information and control consoles are shown by way of example to illustrate the various user specific information that the information and control consoles may contain. These information and control consoles are typically associated with a specific billing and/or service level plan. The gateway administrator or the network operator may choose to offer any or all of these billing and/or service options. The information and control console that will be sent to the user/subscriber's computer may be tailored to reflect the user data that is pertinent to the chosen and available billing methods and/or service levels.
  • FIG. 2 shows an information and control console 50 , that includes the current chosen connection speed (i.e. bandwidth) 52 , an elapsed time counter 54 , a current charges accrued counter 56 and a start/stop button 58 .
  • the attribute fields in this information and control console are typically used if the gateway administrator or network operators offer a billing plan based on the bandwidth that the user selects, commonly referred to as a “pay-per-use” method of billing. For example, the gateway administrator or network operators may structure billing at $0.10 per minute for 200 Kbps bandwidth, $0.20 per minute for 400 Kbps bandwidth and $0.35 per minute for 800 Kbps per minute bandwidth.
  • the initial information and control console will identify 200 Kpbs as the current bandwidth along with the elapsed time that the user has been connected to the accessed network and a running total of the charges that have been incurred. If the user/subscriber desires to change the bandwidth setting, they can click-on the box containing the current bandwidth and are re-directed to a service provisioning screen to choose an alternative billing method.
  • the start/stop buttons 58 allow the user the benefit of stopping the charges to an account (i.e. temporarily disabling the network) without closing the user's web browser.
  • a user/subscriber can activate the stop button and be re-directed back to the home page or portal page. From the user/subscriber standpoint the ability to momentarily disable the network and stop incurring charges is a cost-effective form of networking. From the gateway administrator or network operator standpoint the momentary network stoppage means the user will be directed back to the portal or home page. By re-directing the user back to the portal or home page the gateway administrator or network operator is provided the opportunity to present the user/subscriber with updated information pertaining to the remote location (i.e. the hotel, the airport etc.).
  • the user may activate the start button on the information and control console and charges will again incur.
  • the start/stop buttons may be implemented at the discretion of the gateway administrator or network operator and most of the billing plans and service plans will provide for the option of presenting the start/stop button feature within the information and control console.
  • the information and control console may comprise a timer (not shown in FIGS. 2-6) that alerts the user/subscriber that a subscription is about to expire.
  • buttons 60 located, in this instance, near the bottom of the pop-up panel.
  • the buttons shown in FIG. 2 provide for links to a corporate home page, a travel site on the Internet, an Internet search engine and a network provider home page.
  • the buttons or any other field within the information and control console may include other types of information options, such as advertising fields or user-specific links or fields based upon data found in the user's profile or inputted by the user/subscriber.
  • FIG. 3 depicts an information and control console 70 having the additional attribute fields of billing zone 72 and rate factor 74 .
  • the gateway administrator or network operators may choose to charge a premium for access during peak usage periods. These periods, or zones, will typically be defined by the hours in the day or the days of the week (i.e. weekday versus weekend day). For example network usage during the 9 am to 5 pm period may be billed at a rate factor of 1.25, while network usage during the 5 pm to 9 am period may be billed at a rate factor of 1.0.
  • the information and control console will include the billing zone that the user/subscriber currently occupies, as well as the rate factor that is tied to the specific billing zone. The user/subscriber will have been made aware of billing zones and rate factors when the initial service provisioning screen was presented during the log-on and billing process.
  • FIG. 4 illustrates an information and control console 80 that includes the current data transferred counter 82 , current charges accrued counter 84 , and current connection speed 86 .
  • the attribute fields in this information and control console are typically used if the gateway administrator or network operators offers a billing plan based on the quantity of data that is transferred, typically both sent and received data, commonly referred to as a “bitmeter” method of billing. For example, the gateway administrator or network operator may choose to charge user/subscribers the flat rate of $1.00 per megabyte of data transmitted. If the user/subscriber desires to change the bandwidth setting, they can click-on the box containing the current bandwidth and are re-directed to a service provisioning screen to choose an alternative bandwidth.
  • the start/stop buttons, not shown in FIG. 4, may also be implemented in this information and control console.
  • FIG. 5 shows an information and control console 90 that includes a time remaining counter 92 and a current connection speed 94 .
  • the attribute fields in this information and control console are typically used if the gateway administrator or network operators offer a billing plan based on a specific level of service (i.e. desired bandwidth) for a specific period of time, commonly referred to as an “expiration time” method of billing.
  • the user/subscriber may choose different pricing schemes based on the level of service (i.e. desired bandwidth) and the duration of their subscription. For example, the user may be offered a 1, 2, 4, 8 or 24 hour subscription with the option to operate at a 200, 400 or 800 Kpbs bandwidth.
  • the user/subscriber desires to change the duration of the subscription or the level of service, it may be possible to click-on the box containing the remaining time or current bandwidth, be re-directed to a service provisioning screen and choose an alternate service plan offering a higher level of service or a longer subscription period.
  • the start/stop buttons will not typically be employed in the “expiration time” method because the subscription has a specific time duration.
  • FIG. 6 illustrates an information and control console 100 that includes current connection speed 102 , a remaining credit counter 104 and a start/stop button 106 .
  • the attribute fields in this information and control console are typically used if the gateway administrator or network operator offers a billing plan based on pre-purchasing a desired amount of network “credit”.
  • the user/subscriber will be offered various bandwidth options, each of which is tied to specified costs per minute of use.
  • the user will then purchase a “block” of network access, for example $20.00 of network use.
  • the block of network access will then allow the user to choose the bandwidth of the connection. If the user chooses a slow connection speed they will deplete their “block” of network access more slowly than if they choose a higher connection speed.
  • the start/stop button may also be implemented in this information and control console.
  • the information and control console is not limited to supplying information related to the user/subscriber's billing and service plans. It is also possible to configure the information and control console to include information that is customized to the user/subscriber or the location/site from which the user is remotely located.
  • the user may be located at a hotel for the purpose of attending a specific convention or conference either in the hotel or within the immediate vicinity of the hotel.
  • the gateway interface may have “learned” this information about the user/subscriber through an initial log-on profile inquiry or the gateway administer may have inputted this information into a database.
  • the gateway interface can store profile information within the user-specific AAA database or it can store and retrieve data from external databases.
  • the gateway interface can be configured to recognize these profiles and to customize the information and control console accordingly.
  • the information and control console may include a link for convention or conference services offered by the hotel.
  • the user subscriber may be remotely accessing the gateway interface while located in a specific airport terminal.
  • the gateway interface will be configured so that it is capable of providing ready access to information related to that specific airport terminal, i.e. information pertaining to the current flights scheduled to depart and arrive that terminal, the retail services offered in that specific terminal, etc.
  • the information and control console may include a link for terminal specific flight information and/or terminal specific retail services available to the user/subscriber.
  • Customization of the information comprising the information and control console is not limited to the gateway administrator or the network operator.
  • the user/subscriber may also be able to customize the information that is provided in the information and control console.
  • the user/subscriber customization may be accomplished either directly by the user configuring the information and control console manually or indirectly from the gateway interface configuring the information and control console in response to data found in the user-specific profile.
  • the user/subscribe may be asked to choose which information or type of information they would like supplied in the pop-up for that specific network session. For instance, the user may require an alarm clock counter to insure an appointment is met or the user may require periodical updates of a specific stock quote.
  • the information that a user customizes for the information and control console may be network session specific, may be associated with the duration of a gateway subscription or may be stored in a user/subscriber profile for an indefinite period of time.
  • the gateway interface's ability to communicate with numerous user databases provides the basis for storing user specific profiles for extended periods of time.
  • FIG. 7 illustrates an information and control console 110 that includes bandwidth up 112 selections for uploading data, bandwidth down 114 selections for downloading data, various internet links 116 , 118 and 120 and a user-specific link 122 .
  • the user is able to modify bandwidths on-the-fly by selecting appropriate upload and download selections that meet the desired need of the user. For instance, if the user desires to download a data intensive file it may be desirable to increase the bandwidth and, thus, speed up the download process. Once the file has been downloaded the user may then select a more moderate bandwidth, typically at a lower billing rate. The example holds true for the upload of data. If the user desires to send a data intensive file it may be desirable to increase the bandwidth at which data is sent.
  • the information and control console of this example also comprises a link to an Internet search engine 116 , an Internet auction site 118 and an Internet merchant 120 .
  • These links provide the gateway administrator the capability to advertise to the user/subscribe other Internet sites.
  • the user-specific link 122 provides the user/subscriber with linking capabilities to either information that the user has specifically demanded (e.g. stock quotes, news updates, etc.) or information that the user has shown an interest in (i.e. information learned by querying the user or through logging the Internet sites visited by the user).
  • FIG. 8 shows a flow diagram of a method for providing a network user with an information and control console that incorporates data in accordance with an embodiment of the present invention.
  • the user establishes network access through a gateway interface that is in communication with the user's host and desired network.
  • the gateway interface is capable of providing seamless network access without the need to reconfigure the host prior to network access.
  • Communication between the user's host and the gateway interface can be accomplished though a conventional telephone/modem connection, a digital subscriber line (DSL), cable hook-up, wireless communication or any other suitable communication technique.
  • DSL digital subscriber line
  • Establishing access to the desired network will typically involve an authorization and authentication process and in some instances choosing a desired billing scheme and service level as offered by the gateway administrator or network operator.
  • the gateway interface communicates with various databases to assemble user-specific data.
  • databases may be internal databases located within the gateway interface or external databases located within the infrastructure of the composite network.
  • the user-specific data that the gateway interface assembles may comprise billing scheme related data, service level data, user profile data, remote-site related data or any other data that is related to the user or the location from which the user is located during the networking session.
  • the gateway interface creates pop-up control packets that have attribute data related to the information that will be conveyed in the information and control console. These packets are typically written to accommodate standard Internet Protocol (IP).
  • IP Internet Protocol
  • the packets are sent to the user's host and at step 240 an information and control console is generated on the monitor of the user's host that includes predefined information.
  • the information that is provided for in the pop-up control window will be user-specific information conveyed from a network user profile or directly input by the user/subscriber.
  • the information provided in the information and control console may be links to advertising information, links to marketing information, network monitoring information or any other predefined information.

Abstract

A method for communicating to a host information during an existing networking session. The method comprises the steps of establishing computer network access to a user's host through a gateway interface, creating information and control console packets at the gateway interface, sending the information and control console packets to the user's host, and generating an information and control console on the monitor of the user's host that comprises data. The data will typically comprise user-specific data based upon a user's profile, the chosen billing scheme, the chosen service level or the location from which the user desires access. The gateway interface is capable of transparently connecting the user/subscriber to multiple networks without the need to reconfigure the user's host computer. The information and control console allows the gateway administrator to provide information to the user/subscriber. The information and control console may include information relating to marketing, advertising, services offered and network session monitoring parameters and the like. In one embodiment the information provided for in the information and control console may comprise network session specific data. The user/subscriber can then act on the data provided to dynamically change the features of a current network session.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority from U.S. Provisional Patent Application Serial No. 60/161,139, the contents of which are incorporated by reference.
FIELD OF THE INVENTION
The present invention relates generally to a network gateway interface and, more particularly, to an information and control console for use with a network gateway interface.
BACKGROUND OF THE INVENTION
In order for a computer to function properly in a network environment, the computer must be appropriately configured. Among other things, this configuration process establishes the protocol and other parameters by which the computer transmits and receives data. In one common example, a plurality of computers are networked to create a local area network (LAN). In the LAN, each computer must be appropriately configured in order to exchange data over the network. Since most networks are customized to meet a unique set of requirements, computers that are part of different networks are generally configured in different manners in order to appropriately communicate with their respective networks.
While desktop computers generally remain a part of the same network for a substantial period of time, laptops, handhelds, personal digital assistants (PDAs), cellphones or other portable computers (collectively “portable computers”) are specifically designed to be transportable. As such, portable computers are connected to different networks at different times depending upon the location of the computer. In a common example in which the portable computer serves as an employee's desktop computer, the portable computer is configured to communicate with their employer's network, i.e., the enterprise network. When the employee travels, however, the portable computer may be connected to different networks that communicate in different manners. In this regard, the employee may connect the portable computer to the network maintained by an airport, a hotel, a cellular telephone network operator or any other locale in order to access the enterprise network, the Internet or some other on-line service. The portable computer is also commonly brought to the employee's residence where it is used to access various networks, such as, the enterprise network, a home network, the Internet and the like. Since these other networks are configured somewhat differently, however, the portable computer must also be reconfigured in order to properly communicate with these other networks. Typically, this configuration is performed by the user each time that the portable computer is connected to a different network. As will be apparent, this repeated reconfiguration of the portable computer is not only quite time consuming, but is also prone to errors. The reconfiguration procedure may even be beyond the capabilities of many users or in violation of their employer's information technology (IT) policy.
As described by U.S. patent applications Ser. No. 08/816,174 entitled “Nomadic Router”, filed on Mar. 12, 1997, and now abandoned in the name of inventors Short et. al., and U.S. patent application Ser. No. 09/458,602 entitled “Systems and Methods for Authorizing, Authenticating and Accounting Users Having Transparent Computer Access to a Network Using a Gateway Interface”, filed on Dec. 08, 1999, and still pending in the name of inventors Pagan, et. al., a Universal Subscriber Gateway (USG) device has been developed by Nomadix, Inc. of Westlake Village, Calif., the assignee of the present invention. The contents of both of these applications are expressly incorporated by reference as if fully set forth herein. The gateway interface serves as an interface connecting the user/subscriber to a number of networks or other online services. For example, the gateway interface can serve as a gateway to the Internet, the enterprise network, or other networks and/or on-line services. In addition to serving as a gateway, the gateway interface automatically adapts to a host, in order that it may communicate with the new network in a manner that is transparent both to the user/subscriber and the new network. Once the gateway interface has appropriately adapted to the user's host, the host can communicate via the new network, such as the network at a hotel, at home, at an airport, or any other location, in order to access other networks, such as the enterprise network, or other online services, such as the internet.
The transient user/subscriber, and more specifically the remote or laptop user, benefits from being able to access a myriad of computer networks without having to undergo the time-consuming and all-too-often daunting task of reconfiguring their host in accordance with network specific configurations. From another perspective, the network service provider benefits from avoiding “on-site” visits and/or technical support calls from the user who is unable to properly re-configure the portable computer. In this fashion, the gateway interface is capable of providing more efficient network access and network maintenance to the user/subscriber and the network operator.
A gateway interface is also instrumental in providing the user/subscriber broadband network access that can be tailored to the user's needs. In many instances the remote user is concerned with being able to acquire network access and levels of service in the most cost-effective manner. Correspondingly, the gateway interface administrator desires the capability to be able to offer the user/subscriber numerous different service, routing, and billing rate options. By way of example, the remote user in a hotel environment may desire a network subscription for the duration of their hotel stay while the user in an airport may desire a network subscription for the duration of their layover or until their scheduled flight departs. Additionally, a user may desire a certain level of service based on bandwidth concerns and the need for higher or lower data transfer rates. For example, the user/subscriber who is accessing a network for the purpose of viewing text may desire a lower bandwidth service level that meets their particular needs, however, another user/subscriber who is accessing a network for the purpose of downloading files may desire a higher bandwidth service level capable of transferring data at higher speeds.
Additionally, the network service provider benefits from being able to offer various service, routing and billing options to the user/subscriber. By offering service at varying speeds and pricing scales, the network service provider is able to minimize network congestion, i.e. not all user/subscribers are tied to one high speed (and high cost) service. Lessening network traffic is beneficial for attracting new subscribers and insuring that pre-existing subscribers maintain status quo. From an economic standpoint, differentiated service quality and usage based pricing will promote the use and deployment of broadband network access and enhance the revenue models of the network service providers. No longer will the user/subscriber be tied to a flat-rate billing scheme that offers a single level of service quality. Flat-rate pricing and single level service quality consumes resources, requires light network users to subsidize heavy users, and hinders the dissemination of widespread use of broadband network access. Additionally, the ability to provide differentiated service quality and usage based pricing can be enhanced by providing these features on demand and dynamically throughout the user's network session. For a more detailed discussion of the need to provide differentiated quality of service and billing schemes to the broadband network environment see “Providing Internet Access: What We Learn From INDEX”, INDEX project report #99-010W, Apr. 16, 1999, (http://www.INDEX.Berkeley.edu/reports/99-010W), R. J. Edell et.al. That document is herein expressly incorporated by reference as if setforth fully herein.
In today's fast paced computing and networking environment it is even more advantageous to provide these service and billing options dynamically, allowing the user/subscriber to change, for example, billing rates, service routing or bandwidth capacity while a network session is on going. This would allow the user/subscriber to be billed at one rate while downloading the data-intensive file while choosing a more cost-effective billing structure for the less data-intensive activities. Additionally, the dynamic nature of this process would allow the user/subscriber to change service levels or billing rates without the need to exit the network and initiate a new log-on procedure. In effect, the user/subscriber benefits from having a more efficient and less time-consuming means of altering service levels and billing structure.
In order to make the user/subscriber constantly aware that these diverse service and billing options exist the gateway interface administrator needs to be able to provide the user/subscriber with real-time information pertaining to the network session(s) that the user currently has on-going. The gateway administrator would benefit from being able to provide the user/subscriber with constant or intermittent data related to the network sessions currently on-going, the duration of those sessions, the bandwidth currently being used, the number of bytes that have been transferred and any other information related to the current network session. In this manner, the user/subscriber has the capability to monitor and make the appropriate adjustments to the billing structure and/or service levels related to the network sessions that he or she currently has on going. The user/subscriber may choose to stop or shutdown connections (and thus billing) to those networks not currently being utilized. The user/subscriber may monitor the duration of the network session and determine that a longer subscription is necessary or the user may observe the bandwidth currently used and determine that the current application warrants an increase or decrease in bandwidth. The ability to provide this real-time information to the user is especially important in light of the fact that the typical, infrequent gateway interface user will be unfamiliar with billing and service structure and, particularly, the capability to change these features on-the-fly.
From the perspective of the network service provider, the ability to offer flexible service quality, routing options and billing plans ultimately can lead to less overall network congestion. The current broadband standard of flat rate billing and one-dimensional service and routing options force the network service provider in to effectively transmitting all network data at maximum bandwidth. By lessening the congestion within the network, the service provider is able to accommodate more user/subscribers and provide those user/subscribers with a more effective network. The ability to lessen congestion is even more apparent if the network service provider can offer the user/subscriber the capability to make changes to the service quality, routing and billing structure while the network session is on going. Additionally, by offering differentiated quality of service, routing and billing the network service provider may be able to increase the volume of user/subscribers accessing the network.
SUMMARY OF THE INVENTION
The present invention comprises an information and control console that is administered through a gateway interface. The gateway interface is capable of transparently connecting the user/subscriber to multiple networks without the need to reconfigure the user's host computer. The information and control console allows the gateway administrator, the Internet service provider (ISP) and/or application service provider (ASP) to provide real-time information to the user/subscriber. The information provided to the user in the information and control console may be user-specific information related to the current network session, the current location of the user's host, user-specific profile type information or the like. The user/subscriber can then act on the data provided to dynamically change the features of a current network session. Additionally, the information and control console can provide for information or access to information through appropriate links. In many instances, the information provided or the links to information may be user-specific information. The basis or “know-how” for the user-specific data can be provided by the network service provider (i.e. user profiles in the network database) or through direct user inputs.
The information and control console provides the gateway administrator, the ISP and/or the ASP the capability to provide the user with limitless forms of information and networking options. For example, the gateway administrator can provide the user with network session monitoring information, or it can provide for marketing capabilities through advertising medium or it can provide the gateway administrator with a means to poll or survey users. The ISP and/or the ASP can provide the user with user-specific targeted marketing and advertising information or various service delivery platforms. These examples of the types of information that an information and control console may provide should not be construed as limiting. The information and control console may be configured by the gateway administrator, network provider or user/subscriber to provide a wide variety of information.
In one embodiment of the invention an information and control console is provided to a user/subscriber during a network session. The information and control console may include information and links to information in response to configuration of the panel by the gateway administrator or the subscriber/user. In many instances, the information that is provided for in the information and control console will be user-specific data assembled from user profiles in network databases or from direct user/subscriber inputs. The information that is provided to the user/subscriber via the information and control console may include monitoring of the network session, polling/surveying the user/subscriber, user-tailored advertisements and information on other services/features offered by the gateway administrator, the network provider and/or the application service provider.
In another embodiment of the present invention the information and control console may include network monitoring attributes such as, identifying the network session(s) currently in-use, identifying the duration of network sessions currently in-use, identifying the bandwidth currently available for a specific network session and identifying the current amount of bytes received and/or sent for a specific network session. It is to be understood, by those skilled in the art to which this invention relates that all conceivable useful information relating to the current network session could be displayed to the user/subscriber in a multitude of combinations as defined by the user/subscriber and/or the gateway administrator. The gateway administrator will have the capability to dynamically change the information supplied in the information and control console based on many factors, including the location of the user/subscriber, the profile of the user/subscriber and the chosen billing scheme and service level.
In yet another embodiment of the present invention a method is provided for communicating to a network user predefined information during an ongoing networking session. The method comprises of the steps of establishing computer network access to a user s host through a gateway interface that has the capacity to transparently configure a host to meet the requirements of available networks. In one embodiment, after the gateway interface has granted access to the host the gateway interface communicates with databases associated with the gateway interface to determine user-specific data. The user-specific data may include user-profiled information, host-location-related data, user-specific network monitoring information or the like. This user-specific data is then used to create information and control console packets at the gateway interface, which are then sent to the user's host. The information and control console packets reach the host and generate information and control consoles on a monitor of the user's host. The information and control consoles will comprise data that typically is related to a user's profile, the chosen billing scheme, the chosen service level, the location from which the user desires access or any other information deemed pertinent by the gateway administrator or user/subscriber.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of a computer system that includes a gateway interface for automatically configuring one or more computers to communicate via the gateway interface with other networks or other online services.
FIGS. 2-7 are illustrations of various examples of information and control consoles, in accordance with an embodiment of the present invention.
FIG. 8 is a flowchart diagram of a method for communicating to a network user data during an ongoing network session, in accordance with an embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Referring now to FIG. 1, the computer network system 10 that includes a gateway interface 12 is depicted in block diagram form. The computer network system typically includes a plurality of hosts 14 that access the computer network system in order to gain access to other networks or other online services. For example, the hosts can be plugged into ports that are located in different rooms of a hotel or a multi-dwelling residence. Alternatively, the hosts can be plugged into ports in an airport, an arena, or the like. The computer network system includes a gateway interface that provides for an access point between the plurality of computers and the various networks or other online services. Most commonly, the gateway interface is located near the hosts at a relatively low position in the structure of the overall network. (i.e. the gateway interface will be located within the hotel, multi-unit residence, airport, etc.) However, the gateway interface can be located at a higher position in the overall network structure such as at a Point of Presence (PoP) within a Network Operating Center (NOC), if so desired. Although the gateway interface can be physically embodied in many different fashions, the gateway interface typically includes a controller and a memory device in which software is stored that defines the operational characteristics of the gateway interface. Alternatively, the gateway interface can be embedded within another network device, such as the access controller or a router, or the software that defines the functioning of the gateway interface can be stored on a PCMCIA card that can be inserted into the computer in order to automatically reconfigure the computer to communicate with a different computer system.
The computer network system 10 also typically includes an access controller 16 positioned between the hosts 14 and the gateway interface 12 for multiplexing the signals received from the plurality of computers onto a link to the gateway interface. Depending upon the medium by which the hosts are connected to the access controller, the access controller can be configured in different manners. For example, the access controller can be a digital subscriber line access module (DSLAM) for signals transmitted via regular telephone lines, a cable head end for signals transmitted via coaxial cables, a wireless access point (WAP) for signals transmitted via a wireless network, a cable modem termination system (CMPS), a switch or the like. As also shown in FIG. 1, the computer system typically includes one or more routers 18 and/or servers (not shown in FIG. 1) of a plurality of computer networks 20 or other online services 22. While the computer system is depicted to have a single router, the computer system can have a plurality of routers, switches, bridges, or the like that are arranged in some hierarchical fashion in order to appropriately route traffic to and from the various networks or other online services. In this regard, the gateway interface typically establishes a link with one or more routers. The routers, in turn, establish links with the servers of other networks or other online service providers, such as internet service providers, based upon the subscriber's selection.
The gateway interface 12 is specifically designed to adapt to the configuration of each of the hosts 14 that log onto the computer network system 10 in a manner that is transparent to the subscriber and the computer network. In the typical computer network that employs dynamic host configuration protocol (DHCP) service, an IP address is assigned to the computer that is logging onto the computer network through communication with the gateway interface. The DHCP service can be provided by an external DHCP server 24 or it can be provided by an internal DHCP server located in unison with the gateway interface. Upon opening their web browser or otherwise attempting to access an on-line service, the gateway interface will direct the subscriber to enter some form of an identifier such as their ID and password. In an alternate embodiment of the device, it is anticipated that the gateway interface will be able to automatically detect this information upon connection of the computer to the network or any attempt to log in. The gateway interface then determines if the subscriber is entitled to access the computer system, the level of access and/or the type of services to which the subscriber is entitled according to an Authentication, Authorization and Accounting (AAA) procedure. For a more detailed discussion of the AAA procedure see U.S. patent application Ser. No. 08/816,174 and U.S. patent application Ser. No. 09/458,602, both applications have been assigned to Nomadix, L.L.C., the assignee of the present invention and have been previously incorporated by reference as if setforth fully herein. An AAA server, which is a database of subscriber records, may be remote to the gateway interface or the AAA database may be incorporated into the physical embodiment housing the gateway interface. Assuming that the subscriber has been authenticated and has authorization, the gateway interface typically presents new subscribers with a home page or control panel that identifies, among other things, the online services or other computer networks that are accessible via the gateway interface. In addition, the home page presented by the gateway interface can provide information regarding the current parameters or settings that will govern the access provided to the particular subscriber. As such, the gateway administrator can readily alter the parameters or other settings in order to tailor the service according to their particular application. Typically, changes in the parameters or other settings that will potentially utilize additional resources of the computer network system will come at a cost, such that the gateway administrator will charge the subscriber a higher rate for their service. For example, a subscriber may elect to increase the transfer rate at which signals are transmitted across the computer network and pay a correspondingly higher price for the expedited service.
The home page also permits the subscriber to select the computer network 20 or other online services 22 that the subscriber wishes to access. For example, the subscriber can access the enterprise network on which the computer is typically resident. Alternatively, the subscriber can access the internet or other on-line services. Once the subscriber elects to access a computer network or other online service, the gateway interface establishes an appropriate link via one or more routers 18 to the desired computer network or online service.
Thereafter, the subscriber can communicate freely with the desired computer network 20 or other online service 22. In order to support this communication, the gateway interface 12 generally performs a packet translation function that is transparent to the user/subscriber and the network. In this regard, for outbound traffic from the computer 12 to the computer network or other on-line service, the gateway interface changes attributes within the packet coming from the user/subscriber, such as the source address, checksum, and application specific parameters, to meet the criteria of the network to which the user/subscriber has accessed. In addition, the outgoing packet includes an attribute that will direct all incoming packets from the accessed network to be routed through the gateway interface. In contrast, the inbound traffic from the computer network or other online service that is routed through the gateway interface, undergoes a translation function at the gateway interface so that the packets are properly formatted for the user/subscriber's host. In this manner, the packet translation process that takes place at the gateway interface is transparent to the host, which appears to send and receive data directly from the accessed computer network. Additional information regarding the translation function is provided by U.S. patent application Ser. No. 08/816,714, assigned to Nomadix L.L.C, the assignee of the present invention and previously incorporated by reference as if setforth herein. By implementing the gateway interface as an intermediary between the user/subscriber and the computer network or other online service, the user/subscriber will eliminate the need to re-configure their host 12 upon accessing subsequent networks.
In one embodiment of the present invention, the gateway interface implements an information and control console. Once the user/subscriber has gained access to one or more networks through the gateway interface the information and control console is communicated to the host computer from the gateway interface and provides the user/subscriber with information. The information that is provided to the user/subscriber in the information and control console may include information of various types, forms and content. The information that is provided for in the information and control console may be static information or dynamic information. The information provided in the information and control console may be user specific, site specific or gateway interface specific. In the user-specific model the data may be based on information found in network databases or information provided by the user/subscriber. For example, the network databases may include user profiles that have been assembled by querying the user or by logging the networks and sites visited by the user. Additionally, the information provided for in the information and control console may be network monitoring information, for marketing purposes or any other conceivable purpose that the gateway administrator or user/subscriber deems appropriate.
Within the realm of marketing, the information and control console may include advertising tailored to the specific needs of the user/subscriber. The gateway interface would be capable of tailoring the information based upon the current location of the user s host, user profiles in the network, gateway administrator concerns or the like. Typically, this information is provided for in the information and control console in the form of links to other available networks, Internet sites, intranets or similar networking possibilities. In this fashion, the gateway administrator can offer the user/subscriber access to other networks and services without the user/subscriber having to register for or be approved for a subscription to these other networks or services. The gateway administrator can act as a broker for these other networks and services and, thereby, offer the user/subscriber short-term access to these networks and services at reduced rates.
The information and control console may also incorporate surveys or links to surveys to provide the gateway administrator or network provider with beneficial statistical data. As an ancillary benefit, the user/subscriber who responds to the surveys may be rewarded with network access credit or upgraded quality. Additionally, the gateway administrator can offer additional services to the user/subscriber by way of the information and control console or links to these services may be offered on the information and control console. These services offered by the network service provider are not limited to the services related to the network connection. For example, a hotel may desire to offer the user/subscriber in-room food service or a multi-unit dwelling may want to offer house cleaning service.
The information and control console may also comprise network monitoring information related to the status of the current network session. By way of example this information may include, current billing structure data, the category/level of service that the user/subscriber has chosen, the bandwidth being provided to the user, the bytes of information currently sent or received, the current status of network connection(s) and the duration of the existing network connection(s). It is to be understood, by those skilled in the art to which this invention relates that all conceivable useful information relating to the current network session could be displayed to the user/subscriber in a multitude of combinations as defined by the user/subscriber and/or the gateway administrator. The gateway administrator will have the capability to dynamically change the information supplied in the information and control console based on many factors, including the location of the user/subscriber, the profile of the user subscriber and the chosen billing scheme and service level. The information provided in the information and control console may prompt the user/subscriber to return to the provisioning page to adjust any number of specific parameters, such as the billing scheme, the routing, the level of service and/or other user-related parameters or the user may be able to adjust the billing scheme and service level by responding directly to the information and control console.
The information and control console may be implemented with an object-oriented programming language such as Java developed by Sun Microsystems, Incorporated of Mountain View, Calif. The code that defines the information and control console is embodied within the gateway interface, while the display monitor and the driver are located with the host computer's that are in communication with the gateway interface. The object oriented programming language that is used should be capable of creating executable content (i.e. self-running applications) that can be easily distributed through networking environments. The object oriented programming language should be capable of creating special programs, typically referred to as applets that can be incorporated in web pages to make them interactive. In this invention the applets take the form of the information and control consoles. It should be noted that the chosen object-oriented programming language would require that a compatible web browser be implemented to interpret and run the information and control console. It is also possible to implement the information and control console using other programming languages, such as HTML; however, these languages may not be able to provide all the dynamic capabilities that languages, such as Java provide.
The gateway administrator or the user/subscriber may have control over how frequently an information and control console is invoked by the gateway interface so that it appears on the monitor of the user/subscriber. Typically the gateway interface will be configured to invoke an initial information and control console to the user/subscriber's host a short period of time after the user has gained access to a network service provided by the gateway administrator. Additionally, the information and control console may be invoked automatically in response to predetermined conditions. An example being, invoking the information and control console in response to the user/subscriber's imminent subscription expiration. The information and control console may also be generated and controlled by the user/subscriber. The user/subscriber can choose to have the information and control console visual throughout the network session or the pop-up control can be minimized or deleted. It is also possible for the gateway administer to configure the information and control console so that it can not be deleted or the user/ subscriber can be rewarded (e.g. additional access time or the like) for maintaining a visible pop-up control throughout the network session.
The information and control console is configured to send heartbeat packets back to the gateway interface at predetermined specified intervals to let the gateway know that the user/subscriber still has an active, information and control console in use or at the user's disposal. If the gateway interface does not receive a heartbeat from the host after a predetermined period of time, it will assume that the user has deleted the information and control console or the information and control console has otherwise failed. In the instance where a heartbeat is not received by the gateway interface after a predetermined time period, the gateway interface will re-send a new updated information and control console to the user/subscriber. Through the use of these “heartbeats” the gateway interface will be able to insure that the user/subscriber always has ready access to the user-related information provided by the information and control console. The user/subscriber will also have the capability to locate the information and control console anywhere within the viewable area of the computer monitor. The physical embodiment of the information and control console can be modified in an infinite number of ways to suit either the user or the gateway administrator. For example, the panel size, color, graphics, location, form of read out (digital vs. analog), language, scales (e.g. metric vs. U.S.) can all be varied, as well as the rate at which information is provided. Additionally, the information and control console may be configured by the user or gateway administrator such that the outlining panel and background of the console are transparent and, thus, only the linking buttons and other information are visible on the monitor.
It should be noted that in most embodiments the information and control console will only be actively sent from the gateway interface if the user/subscriber is accessing a network provided service, such as broadband Internet access, that is provided by the gateway administrator. If the user chooses to stop using the network service, such as broadband Internet access, they can close the application and the information and control console will correspondingly be inactive. The gateway interface recognizes that the network provided service has been disabled and stops sending information and control console packets to the host. Upon the user/subscriber re-activating the network provided service, the gateway interface will recognize the need to send a new information and control console and begin recognizing “heartbeats” coming from the information and control console. However, it also possible to configure the gateway interface to send information and control console packets to the user/subscriber who is not currently activating a network service or currently involved in a networking session. For offline sending of information and control console packets the host must be in networking communication with the gateway interface.
FIGS. 2-6 are depictions of various examples of information and control consoles providing for network session data. These information and control consoles are shown by way of example to illustrate the various user specific information that the information and control consoles may contain. These information and control consoles are typically associated with a specific billing and/or service level plan. The gateway administrator or the network operator may choose to offer any or all of these billing and/or service options. The information and control console that will be sent to the user/subscriber's computer may be tailored to reflect the user data that is pertinent to the chosen and available billing methods and/or service levels.
FIG. 2 shows an information and control console 50, that includes the current chosen connection speed (i.e. bandwidth) 52, an elapsed time counter 54, a current charges accrued counter 56 and a start/stop button 58. The attribute fields in this information and control console are typically used if the gateway administrator or network operators offer a billing plan based on the bandwidth that the user selects, commonly referred to as a “pay-per-use” method of billing. For example, the gateway administrator or network operators may structure billing at $0.10 per minute for 200 Kbps bandwidth, $0.20 per minute for 400 Kbps bandwidth and $0.35 per minute for 800 Kbps per minute bandwidth. If the user chooses 200 Kpbs at $0.10 per minute, then the initial information and control console will identify 200 Kpbs as the current bandwidth along with the elapsed time that the user has been connected to the accessed network and a running total of the charges that have been incurred. If the user/subscriber desires to change the bandwidth setting, they can click-on the box containing the current bandwidth and are re-directed to a service provisioning screen to choose an alternative billing method.
The start/stop buttons 58 allow the user the benefit of stopping the charges to an account (i.e. temporarily disabling the network) without closing the user's web browser. A user/subscriber can activate the stop button and be re-directed back to the home page or portal page. From the user/subscriber standpoint the ability to momentarily disable the network and stop incurring charges is a cost-effective form of networking. From the gateway administrator or network operator standpoint the momentary network stoppage means the user will be directed back to the portal or home page. By re-directing the user back to the portal or home page the gateway administrator or network operator is provided the opportunity to present the user/subscriber with updated information pertaining to the remote location (i.e. the hotel, the airport etc.). When the user desires to re-establish network connection the user may activate the start button on the information and control console and charges will again incur. The start/stop buttons may be implemented at the discretion of the gateway administrator or network operator and most of the billing plans and service plans will provide for the option of presenting the start/stop button feature within the information and control console. Additionally, the information and control console may comprise a timer (not shown in FIGS. 2-6) that alerts the user/subscriber that a subscription is about to expire.
Additional information and control console fields are provided in the form of click-on buttons 60 located, in this instance, near the bottom of the pop-up panel. By way of example the buttons shown in FIG. 2 provide for links to a corporate home page, a travel site on the Internet, an Internet search engine and a network provider home page. Those of ordinary skill in the art will note that the additional fields within the pop-up panel may encompass infinite possibilities for links, services and information. Additionally, the buttons or any other field within the information and control console may include other types of information options, such as advertising fields or user-specific links or fields based upon data found in the user's profile or inputted by the user/subscriber.
FIG. 3 depicts an information and control console 70 having the additional attribute fields of billing zone 72 and rate factor 74. The gateway administrator or network operators may choose to charge a premium for access during peak usage periods. These periods, or zones, will typically be defined by the hours in the day or the days of the week (i.e. weekday versus weekend day). For example network usage during the 9 am to 5 pm period may be billed at a rate factor of 1.25, while network usage during the 5 pm to 9 am period may be billed at a rate factor of 1.0. Thus, the information and control console will include the billing zone that the user/subscriber currently occupies, as well as the rate factor that is tied to the specific billing zone. The user/subscriber will have been made aware of billing zones and rate factors when the initial service provisioning screen was presented during the log-on and billing process.
FIG. 4 illustrates an information and control console 80 that includes the current data transferred counter 82, current charges accrued counter 84, and current connection speed 86. The attribute fields in this information and control console are typically used if the gateway administrator or network operators offers a billing plan based on the quantity of data that is transferred, typically both sent and received data, commonly referred to as a “bitmeter” method of billing. For example, the gateway administrator or network operator may choose to charge user/subscribers the flat rate of $1.00 per megabyte of data transmitted. If the user/subscriber desires to change the bandwidth setting, they can click-on the box containing the current bandwidth and are re-directed to a service provisioning screen to choose an alternative bandwidth. The start/stop buttons, not shown in FIG. 4, may also be implemented in this information and control console.
FIG. 5 shows an information and control console 90 that includes a time remaining counter 92 and a current connection speed 94. The attribute fields in this information and control console are typically used if the gateway administrator or network operators offer a billing plan based on a specific level of service (i.e. desired bandwidth) for a specific period of time, commonly referred to as an “expiration time” method of billing. In this billing and service scheme, the user/subscriber may choose different pricing schemes based on the level of service (i.e. desired bandwidth) and the duration of their subscription. For example, the user may be offered a 1, 2, 4, 8 or 24 hour subscription with the option to operate at a 200, 400 or 800 Kpbs bandwidth. If the user/subscriber desires to change the duration of the subscription or the level of service, it may be possible to click-on the box containing the remaining time or current bandwidth, be re-directed to a service provisioning screen and choose an alternate service plan offering a higher level of service or a longer subscription period. The start/stop buttons will not typically be employed in the “expiration time” method because the subscription has a specific time duration.
FIG. 6 illustrates an information and control console 100 that includes current connection speed 102, a remaining credit counter 104 and a start/stop button 106. The attribute fields in this information and control console are typically used if the gateway administrator or network operator offers a billing plan based on pre-purchasing a desired amount of network “credit”. In this type of billing scheme the user/subscriber will be offered various bandwidth options, each of which is tied to specified costs per minute of use. The user will then purchase a “block” of network access, for example $20.00 of network use. The block of network access will then allow the user to choose the bandwidth of the connection. If the user chooses a slow connection speed they will deplete their “block” of network access more slowly than if they choose a higher connection speed. By clicking-on the bandwidth connection field within the information and control console the user/subscriber will be re-directed to the service provisioning page to change the bandwidth to accommodate a higher or lower connection speed. The start/stop button may also be implemented in this information and control console.
The information and control console is not limited to supplying information related to the user/subscriber's billing and service plans. It is also possible to configure the information and control console to include information that is customized to the user/subscriber or the location/site from which the user is remotely located. For example, the user may be located at a hotel for the purpose of attending a specific convention or conference either in the hotel or within the immediate vicinity of the hotel. The gateway interface may have “learned” this information about the user/subscriber through an initial log-on profile inquiry or the gateway administer may have inputted this information into a database. The gateway interface can store profile information within the user-specific AAA database or it can store and retrieve data from external databases. The gateway interface can be configured to recognize these profiles and to customize the information and control console accordingly. In the hotel scenario, the information and control console may include a link for convention or conference services offered by the hotel.
In another example of location specific information and control console data, the user subscriber may be remotely accessing the gateway interface while located in a specific airport terminal. The gateway interface will be configured so that it is capable of providing ready access to information related to that specific airport terminal, i.e. information pertaining to the current flights scheduled to depart and arrive that terminal, the retail services offered in that specific terminal, etc. In this manner, the information and control console may include a link for terminal specific flight information and/or terminal specific retail services available to the user/subscriber.
Customization of the information comprising the information and control console is not limited to the gateway administrator or the network operator. The user/subscriber may also be able to customize the information that is provided in the information and control console. The user/subscriber customization may be accomplished either directly by the user configuring the information and control console manually or indirectly from the gateway interface configuring the information and control console in response to data found in the user-specific profile. In the manual embodiment the user/subscribe may be asked to choose which information or type of information they would like supplied in the pop-up for that specific network session. For instance, the user may require an alarm clock counter to insure an appointment is met or the user may require periodical updates of a specific stock quote. The information that a user customizes for the information and control console may be network session specific, may be associated with the duration of a gateway subscription or may be stored in a user/subscriber profile for an indefinite period of time. The gateway interface's ability to communicate with numerous user databases provides the basis for storing user specific profiles for extended periods of time.
FIG. 7 illustrates an information and control console 110 that includes bandwidth up 112 selections for uploading data, bandwidth down 114 selections for downloading data, various internet links 116, 118 and 120 and a user-specific link 122. The user is able to modify bandwidths on-the-fly by selecting appropriate upload and download selections that meet the desired need of the user. For instance, if the user desires to download a data intensive file it may be desirable to increase the bandwidth and, thus, speed up the download process. Once the file has been downloaded the user may then select a more moderate bandwidth, typically at a lower billing rate. The example holds true for the upload of data. If the user desires to send a data intensive file it may be desirable to increase the bandwidth at which data is sent. The information and control console of this example also comprises a link to an Internet search engine 116, an Internet auction site 118 and an Internet merchant 120. These links provide the gateway administrator the capability to advertise to the user/subscribe other Internet sites. The user-specific link 122 provides the user/subscriber with linking capabilities to either information that the user has specifically demanded (e.g. stock quotes, news updates, etc.) or information that the user has shown an interest in (i.e. information learned by querying the user or through logging the Internet sites visited by the user).
FIG. 8 shows a flow diagram of a method for providing a network user with an information and control console that incorporates data in accordance with an embodiment of the present invention. At step 200, the user establishes network access through a gateway interface that is in communication with the user's host and desired network. The gateway interface is capable of providing seamless network access without the need to reconfigure the host prior to network access. Communication between the user's host and the gateway interface can be accomplished though a conventional telephone/modem connection, a digital subscriber line (DSL), cable hook-up, wireless communication or any other suitable communication technique. Establishing access to the desired network will typically involve an authorization and authentication process and in some instances choosing a desired billing scheme and service level as offered by the gateway administrator or network operator. Once the user has established the network service connection and a tunnel has been opened to facilitate an open communication line between the user's host and the network, the gateway interface, at optional step 210, communicates with various databases to assemble user-specific data. These databases may be internal databases located within the gateway interface or external databases located within the infrastructure of the composite network. The user-specific data that the gateway interface assembles may comprise billing scheme related data, service level data, user profile data, remote-site related data or any other data that is related to the user or the location from which the user is located during the networking session.
At step 220, the gateway interface creates pop-up control packets that have attribute data related to the information that will be conveyed in the information and control console. These packets are typically written to accommodate standard Internet Protocol (IP). At step 230, the packets are sent to the user's host and at step 240 an information and control console is generated on the monitor of the user's host that includes predefined information. In many instances, the information that is provided for in the pop-up control window will be user-specific information conveyed from a network user profile or directly input by the user/subscriber. As previously discussed the information provided in the information and control console may be links to advertising information, links to marketing information, network monitoring information or any other predefined information.
Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (36)

That which is claimed:
1. A method for communicating to a host computer information during an existing networking session, the method comprising:
establishing, via a gateway interface, a network session between a host computer and a computer network;
creating, during the established network session, information and control console packets;
sending the information and control console packets to the host computer repeatedly throughout the network session; and
generating, during the established network session, one or more information and control console on a monitor of the host computer,
wherein the method provides a user an ability to re-configure the network session during the established network session by input to the information and control console.
2. The method of claim 1, further comprising communicating, during the established network session, with databases in communication with the gateway interface to determine user-specific data that is used in creating information and control console packets.
3. The method of claim 2, wherein the user-specific data comprises data related to a physical location of the host.
4. The method of claim 2, wherein the user-specific data comprises data related to a profile of the user.
5. The method of claim 4, further comprising querying the user and constructing the profile of the user based upon responses from the user to the query.
6. The method of claim 4, further comprising logging networks, services and sites accessed by the user and constructing the profile of the user based upon the logged data.
7. The method of claim 2, wherein creating, during the established network session, information and control console packets further comprises creating information and control packets at the gateway interface that reflect the user-specific data.
8. The method of claim 2, wherein generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer further comprises generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer that comprises user-specific information.
9. The method of claim 8, wherein the user-specific information includes a link to another available network.
10. The method of claim 8, wherein the user-specific information includes a link to user-tailored marketing information.
11. The method of claim 8, wherein the user-specific information includes a link to user-tailored advertising information.
12. The method of claim 8, wherein the user-specific information includes a link to a gateway administrator survey.
13. The method of claim 1, wherein generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer further comprises generating an information and control console on the monitor of the host computer that comprises generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host that comprises a link to another available network.
14. The method of claim 1, wherein generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer further comprises generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer that comprises a link to marketing information.
15. The method of claim 1, wherein generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer further comprises generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer that comprises a link to advertising information.
16. The method of claim 1, wherein generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer further comprises generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer that comprises a link to a gateway administrator survey.
17. The method of claim 1, wherein generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer further comprises generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer that comprises network monitoring information.
18. The method of claim 17, wherein the network monitoring information includes at least one type of network monitoring information selected from the group consisting of user billing structure, user level of service, current network connection speed, quantity of data transferred, current charges accrued, elapsed time of network session, current time of day billing zone, current day of week billing zone, or current network status.
19. The method of claim 1, further comprising sending information and control console monitor heartbeats from the host computer to the gateway interface following the generation of the information and control console, wherein the sending of information and control console monitor heartbeats occurs at predetermined intervals to notify the gateway interface that the information and control console monitor remains active.
20. The method of claim 19, further comprising re-sending information and control console packets to the host computer in response to the gateway interface failing to receive information and control console monitor heartbeats after a predetermined period of time.
21. A method for dynamically changing user billing structure during an ongoing network session, the method comprising:
establishing, via a gateway interface, a network session between a host computer and a computer network;
creating, during the established network session, network monitoring information and control console packets that include information relating to the user-billing structure;
sending the network monitoring information and control console packets to the host repeatedly throughout the network session; and
generating, during the established network session, one or more network monitoring information and control consoles on a monitor of the host computer that provide a user an ability to change network session billing sure during the established network session.
22. The method of claim 21, further comprising accepting, at the gateway interface, user responses to network monitoring information provided in the network monitoring information and control console to change the user-billing structure.
23. The method of claim 21, wherein creating, during the established network session, network monitoring information and control console packets at the gateway interface network that include information relating to the user-billing structure further comprises creating, during the established network session, network monitoring information and control console packets at the gateway interface network information that includes information relating to at least one type of user-billing structure information selected from the group consisting of connection speed, quantity of data transmitted, time of day billing zones, time of week billing zones, or duration of network session.
24. The method of claim 21, further comprising sending information and control console monitor heartbeats from the host computer to the gateway interface following the generation of the information and control console, wherein the sending of information and control console monitor heartbeats occurs at predetermined intervals to notify the gateway interface that the information and control console monitor remains active.
25. The method of claim 21, further comprising re-sending information and control console packets to the host computer in response to the gateway interface failing to receive information and control console monitor heartbeats after a predetermined period of time.
26. A method for dynamically changing user level of service during an ongoing network session, the method comprising:
establishing, via a gateway interface, a network session between a host computer and a computer network;
creating, during the established network session, network monitoring information and control console packets that include information relating to the user level of service;
sending the network monitoring information and control console packets to the host periodically throughout the network session; and
generating, during the established network session, one or more network monitoring information and control consoles on a monitor of the host computer that provide a user an ability to change network session level of service during the established network session.
27. The method of claim 26, further comprising accepting, at the gateway interface, user responses to network monitoring information provided in the network monitoring information and control console to change the user level of service.
28. The method of claim 26, wherein creating, during the established network session, network monitoring information and control console packets at the gateway interface that include information relating to the user level of service further comprises creating, during the established network session, network monitoring information and control console packets at the gateway interface that includes information related to connection speeds.
29. A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform steps for communication to a network user information during an ongoing networking session, the program of instructions comprising the steps of:
establishing, via a gateway interface, a network session between a host computer and a computer network;
creating, during the established network session, information and control console packets;
sending the information and control console packets to the host periodically throughout the network session; and
generating, during the established network session, one or more information and control consoles on a monitor of the host,
wherein the instructions provide a user an ability to re-configure the network session during the established network session by input to the information and control console.
30. The program storage device of claim 29, further comprising communicating, during the established network session, with databases in communication with the gateway interface to determine user-specific data that is used in creating information and control console packets.
31. The program storage device of claim 29, wherein creating, during the established network session, information and control console packets further comprises creating information and control packets at the gateway interface that reflect the user-specific data.
32. The program storage device of claim 29, wherein generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer further comprises generating, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer that comprises user-specific information.
33. A computer program product, comprising:
a computer usable medium having a computer readable program code embodied therein for causing information to be provided to a network host during an ongoing networking session, the computer readable program code comprising:
computer-readable program means for causing a host computer to establish, via a gateway interface, a network session between a host computer and a computer network;
computer-readable program means for causing a host computer to create, during the established network session, information and control console packets;
computer-readable program means for causing a host computer to send the information and control console packets to the host repeatedly throughout the network session; and
computer-readable program means for causing a host computer to generate, during the established network session, one or more information and control consoles on a monitor of the host,
wherein the computer-readable program provides a user an ability to re-configure the network session during the established network session by input to the information and control console.
34. The computer program product of claim 33, further comprising computer-readable program means for causing a host computer to communicate, during the established network session, with databases in communication with the gateway interface to determine user-specific data that is used in creating information and control console packets.
35. The computer program product of claim 33, wherein the computer-readable program means for causing a host computer to create, during the established network session, information and control console packets at the gateway interface further comprises the computer-readable program means for causing a host computer to create information and control packets at the gateway interface that reflect the user-specific data.
36. The computer program product of claim 33, wherein the computer-readable program means for causing a host computer to generate, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host computer-readable program means for causing a host computer to generate, in response to receipt of the information and control console packets, one or more information and control consoles on a monitor of the host user-specific information.
US09/541,877 1999-10-22 2000-04-03 Information and control console for use with a network gateway interface Expired - Lifetime US6789110B1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US09/541,877 US6789110B1 (en) 1999-10-22 2000-04-03 Information and control console for use with a network gateway interface
CA2737890A CA2737890A1 (en) 1999-10-22 2000-10-16 Information and control console for use with a network gateway interface
EP00972188A EP1234425B1 (en) 1999-10-22 2000-10-16 Information and control console for use with a network gateway interface
DE60029819T DE60029819T2 (en) 1999-10-22 2000-10-16 INFORMATION AND CONTROL CONSOLE FOR USE IN A NETWORK CARE INTERFACE
CNB008159823A CN1233129C (en) 1999-10-22 2000-10-16 Information and control console for use with network gateway interface
IL14918800A IL149188A0 (en) 1999-10-22 2000-10-16 Information and control console for use with a network gateway interface
ES00972188T ES2269195T3 (en) 1999-10-22 2000-10-16 INFORMATION AND COMMAND CONSOLE FOR USE WITH A NETWORK GATE INTERFACE.
PCT/US2000/028541 WO2001031883A2 (en) 1999-10-22 2000-10-16 Information and control console for use with a network gateway interface
AT00972188T ATE335340T1 (en) 1999-10-22 2000-10-16 INFORMATION AND CONTROL CONSOLE FOR USE IN A NETWORK GATAWAY INTERFACE
KR1020027005059A KR100559357B1 (en) 1999-10-22 2000-10-16 Information and control console for use with a network gateway interface
CA2388601A CA2388601C (en) 1999-10-22 2000-10-16 Information and control console for use with a network gateway interface
JP2001533716A JP3880856B2 (en) 1999-10-22 2000-10-16 Information and control console for use with network gateway interfaces
AU10885/01A AU1088501A (en) 1999-10-22 2000-10-16 Information and control console for use with a network gateway interface
IL149188A IL149188A (en) 1999-10-22 2002-04-16 Information and control console for use with a network gateway interface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16113999P 1999-10-22 1999-10-22
US09/541,877 US6789110B1 (en) 1999-10-22 2000-04-03 Information and control console for use with a network gateway interface

Publications (1)

Publication Number Publication Date
US6789110B1 true US6789110B1 (en) 2004-09-07

Family

ID=26857545

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/541,877 Expired - Lifetime US6789110B1 (en) 1999-10-22 2000-04-03 Information and control console for use with a network gateway interface

Country Status (12)

Country Link
US (1) US6789110B1 (en)
EP (1) EP1234425B1 (en)
JP (1) JP3880856B2 (en)
KR (1) KR100559357B1 (en)
CN (1) CN1233129C (en)
AT (1) ATE335340T1 (en)
AU (1) AU1088501A (en)
CA (2) CA2737890A1 (en)
DE (1) DE60029819T2 (en)
ES (1) ES2269195T3 (en)
IL (2) IL149188A0 (en)
WO (1) WO2001031883A2 (en)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010025275A1 (en) * 2000-03-23 2001-09-27 Nobuaki Tanaka System for internet connections, method for calculating connection fees for network connection services, billing system for network connection services, and system for network connection management
US20020049841A1 (en) * 2000-03-03 2002-04-25 Johnson Scott C Systems and methods for providing differentiated service in information management environments
US20020069272A1 (en) * 2000-05-05 2002-06-06 Kim Steven D. System and method for managing server configurations
US20020141420A1 (en) * 2001-03-30 2002-10-03 Sugiarto Basuki Afandi Throttling control system and method
US20020191575A1 (en) * 2001-06-18 2002-12-19 Broadwave, Inc. Method and apparatus for converging local area and wide area wireless data networks
US20030028611A1 (en) * 2001-07-23 2003-02-06 Kenny John G. Multi-task, multi-location networking system
US20030051041A1 (en) * 2001-08-07 2003-03-13 Tatara Systems, Inc. Method and apparatus for integrating billing and authentication functions in local area and wide area wireless data networks
US20030065716A1 (en) * 2001-09-12 2003-04-03 Hiroshi Kyusojin Service providing system and method therefor
US20030079032A1 (en) * 2001-09-10 2003-04-24 John Orsolits Enterprise software gateway
US20030115339A1 (en) * 2001-10-29 2003-06-19 Takeshi Hodoshima Parameter setting system
US20030172143A1 (en) * 2002-03-06 2003-09-11 Koji Wakayama Access node apparatus and method for internet using condition analysis
US20030212768A1 (en) * 2002-05-09 2003-11-13 Gateway, Inc. System and method for centralizing and synchronizing network configuration data
US20030233444A1 (en) * 2002-04-09 2003-12-18 Cisco Technology, Inc. System and method for monitoring information in a network environment
US20040123151A1 (en) * 2002-12-23 2004-06-24 Authenture, Inc. Operation modes for user authentication system based on random partial pattern recognition
US20040119746A1 (en) * 2002-12-23 2004-06-24 Authenture, Inc. System and method for user authentication interface
US20040179605A1 (en) * 2003-03-12 2004-09-16 Lane Richard Doil Multimedia transcoding proxy server for wireless telecommunication system
US20050044350A1 (en) * 2003-08-20 2005-02-24 Eric White System and method for providing a secure connection between networked computers
US20050086296A1 (en) * 2003-08-15 2005-04-21 Blackboard Inc. Content system and associated methods
US20050135325A1 (en) * 2003-12-17 2005-06-23 Samsung Electronics Co., Ltd. Asynchronous mobile communication terminal capable of setting time according to present location information, and asynchronous mobile communication system and method for setting time using the same
US20050204169A1 (en) * 2004-03-10 2005-09-15 Tonnesen Steven D. System and method for detection of aberrant network behavior by clients of a network access gateway
US20050261915A1 (en) * 2002-11-22 2005-11-24 Yasuomi Ooki Internet connection system
US20060073826A1 (en) * 2001-12-11 2006-04-06 Cisco Technology, Inc., A California Corporation System and method for selecting a wireless serving mode
US20060282318A1 (en) * 2005-06-10 2006-12-14 Emergency 24, Inc. Method of suspending an internet advertising campaign for an advertised web site when the web site is inaccessible
WO2007000175A1 (en) * 2005-06-28 2007-01-04 Telecom Italia S.P.A. Indication of service availability for a user terminal
US20070282998A1 (en) * 2003-07-23 2007-12-06 Haitao Zhu Method for monitoring connection state of user
US20080071860A1 (en) * 2002-05-17 2008-03-20 Xds Inc. System and method for provisioning universal stateless digital and computing services
US20080072045A1 (en) * 2006-08-23 2008-03-20 Authernative, Inc. Authentication method of random partial digitized path recognition with a challenge built into the path
US20080291894A1 (en) * 2007-05-21 2008-11-27 Hisao Chang Methods and apparatus to communicate using a multi-fidelity audio gateway
US7509625B2 (en) 2004-03-10 2009-03-24 Eric White System and method for comprehensive code generation for system management
US20090147682A1 (en) * 2007-09-25 2009-06-11 David Salick Bandwidth Managing Router and System
EP2096798A1 (en) * 2008-02-29 2009-09-02 Accenture Global Services GmbH Dynamic profile system for resource access control
US7610621B2 (en) 2004-03-10 2009-10-27 Eric White System and method for behavior-based firewall modeling
US20100020685A1 (en) * 1999-10-22 2010-01-28 Nomadix, Inc. Systems and methods for dynamic bandwidth management on a per subscriber basis in a communications network
US7665130B2 (en) 2004-03-10 2010-02-16 Eric White System and method for double-capture/double-redirect to a different location
US20100121902A1 (en) * 2008-11-07 2010-05-13 Microsoft Corporation Service delivery online
US20110010311A1 (en) * 2007-05-25 2011-01-13 Zte Corporation Method and System for Charging According to Flow of MBMS
US20110030037A1 (en) * 2009-07-07 2011-02-03 Vadim Olshansky Zone migration in network access
US7970891B1 (en) * 2007-01-17 2011-06-28 Google Inc. Tracking links in web browsers
US7987449B1 (en) * 2003-05-22 2011-07-26 Hewlett-Packard Development Company, L.P. Network for lifecycle management of firmware and software in electronic devices
US8027339B2 (en) 1997-03-12 2011-09-27 Nomadix, Inc. System and method for establishing network connection
US8074259B1 (en) * 2005-04-28 2011-12-06 Sonicwall, Inc. Authentication mark-up data of multiple local area networks
US20110302632A1 (en) * 2009-01-16 2011-12-08 David Garrett Method and System for Supporting Visitor Access Via a Broadband Gateway
US8117639B2 (en) 2002-10-10 2012-02-14 Rocksteady Technologies, Llc System and method for providing access control
US8156246B2 (en) 1998-12-08 2012-04-10 Nomadix, Inc. Systems and methods for providing content and services on a network system
US8190708B1 (en) 1999-10-22 2012-05-29 Nomadix, Inc. Gateway device having an XML interface and associated method
US20120184271A1 (en) * 2000-05-30 2012-07-19 Stefano Faccin System And Method Of Controlling Application Level Access Of Subscriber To A Network
US8266269B2 (en) 1998-12-08 2012-09-11 Nomadix, Inc. Systems and methods for providing content and services on a network system
US8526940B1 (en) 2004-08-17 2013-09-03 Palm, Inc. Centralized rules repository for smart phone customer care
US8543710B2 (en) 2004-03-10 2013-09-24 Rpx Corporation Method and system for controlling network access
US8578361B2 (en) 2004-04-21 2013-11-05 Palm, Inc. Updating an electronic device with update agent code
US8595794B1 (en) 2006-04-13 2013-11-26 Xceedium, Inc. Auditing communications
US8613053B2 (en) 1998-12-08 2013-12-17 Nomadix, Inc. System and method for authorizing a portable communication device
US8752044B2 (en) 2006-07-27 2014-06-10 Qualcomm Incorporated User experience and dependency management in a mobile device
US8761142B2 (en) 2012-10-19 2014-06-24 Ubiquiti Networks, Inc. Distributed seamless roaming in wireless networks
US8836601B2 (en) 2013-02-04 2014-09-16 Ubiquiti Networks, Inc. Dual receiver/transmitter radio devices with choke
US8855730B2 (en) 2013-02-08 2014-10-07 Ubiquiti Networks, Inc. Transmission and reception of high-speed wireless communication using a stacked array antenna
US8893110B2 (en) 2006-06-08 2014-11-18 Qualcomm Incorporated Device management in a network
US9025599B2 (en) 1999-02-24 2015-05-05 Guest Tek Interactive Entertainment Ltd. Methods and apparatus for providing high speed connectivity to a hotel environment
US9118578B2 (en) 2011-01-18 2015-08-25 Nomadix, Inc. Systems and methods for group bandwidth management in a communication systems network
US9172605B2 (en) 2014-03-07 2015-10-27 Ubiquiti Networks, Inc. Cloud device identification and authentication
US9191037B2 (en) 2013-10-11 2015-11-17 Ubiquiti Networks, Inc. Wireless radio system optimization by persistent spectrum analysis
US20160080239A1 (en) * 2014-09-15 2016-03-17 Ooyala, Inc. Real-time, low memory estimation of unique client computers communicating with a server computer
US9301315B1 (en) * 2011-03-09 2016-03-29 Amdocs Software Systems Limited System, method, and computer program for transmitting network communications at a point in time automatically determined based on communication rates
US9325516B2 (en) 2014-03-07 2016-04-26 Ubiquiti Networks, Inc. Power receptacle wireless access point devices for networked living and work spaces
US9368870B2 (en) 2014-03-17 2016-06-14 Ubiquiti Networks, Inc. Methods of operating an access point using a plurality of directional beams
US9397820B2 (en) 2013-02-04 2016-07-19 Ubiquiti Networks, Inc. Agile duplexing wireless radio devices
US9496620B2 (en) 2013-02-04 2016-11-15 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
US9543635B2 (en) 2013-02-04 2017-01-10 Ubiquiti Networks, Inc. Operation of radio devices for long-range high-speed wireless communication
US9634373B2 (en) 2009-06-04 2017-04-25 Ubiquiti Networks, Inc. Antenna isolation shrouds and reflectors
US9680704B2 (en) 2015-09-25 2017-06-13 Ubiquiti Networks, Inc. Compact and integrated key controller apparatus for monitoring networks
US9761954B2 (en) 2015-10-09 2017-09-12 Ubiquiti Networks, Inc. Synchronized multiple-radio antenna systems and methods
US9912034B2 (en) 2014-04-01 2018-03-06 Ubiquiti Networks, Inc. Antenna assembly
USD817313S1 (en) 2016-12-22 2018-05-08 Michael Horito Network access point
US10069580B2 (en) 2014-06-30 2018-09-04 Ubiquiti Networks, Inc. Wireless radio device alignment tools and methods
US10136233B2 (en) 2015-09-11 2018-11-20 Ubiquiti Networks, Inc. Compact public address access point apparatuses
US10142989B2 (en) 2014-08-31 2018-11-27 Ubiquiti Networks, Inc. Methods and apparatuses for graphically indicating station efficiency and pseudo-dynamic error vector magnitude information for a network of wireless stations
US10164332B2 (en) 2014-10-14 2018-12-25 Ubiquiti Networks, Inc. Multi-sector antennas
US10194328B2 (en) 2014-06-30 2019-01-29 Ubiquiti Networks, Inc. Methods and tools for persistent spectrum analysis of an operating radio frequency band
US10237137B2 (en) 2016-09-12 2019-03-19 Edward Linn Helvey Remotely assigned, bandwidth-limiting internet access apparatus and method
US10284268B2 (en) 2015-02-23 2019-05-07 Ubiquiti Networks, Inc. Radio apparatuses for long-range communication of radio-frequency information
CN110213250A (en) * 2019-05-21 2019-09-06 深圳壹账通智能科技有限公司 Data processing method and terminal device
US10425536B2 (en) 2014-05-08 2019-09-24 Ubiquiti Networks, Inc. Phone systems and methods of communication
US10574474B2 (en) 2014-03-07 2020-02-25 Ubiquiti Inc. Integrated power receptacle wireless access point (AP) adapter devices
US10924641B2 (en) 2017-07-10 2021-02-16 Ubiquiti Inc. Wearable video camera medallion with circular display
US11258764B2 (en) 2017-09-27 2022-02-22 Ubiquiti Inc. Systems for automatic secured remote access to a local network
US11482352B2 (en) 2018-01-09 2022-10-25 Ubiquiti Inc. Quick connecting twisted pair cables
US11677688B2 (en) 2019-09-13 2023-06-13 Ubiquiti Inc. Augmented reality for internet connectivity installation
US11909087B2 (en) 2013-02-04 2024-02-20 Ubiquiti Inc. Coaxial RF dual-polarized waveguide filter and method

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554101B2 (en) * 2001-02-28 2010-09-29 株式会社フジクラ Media converter with local information transmission function and fault alarm signal transmission system
US20040199610A1 (en) * 2001-04-18 2004-10-07 Peter Nilson Method and arrangement for connecting a workstation to a wide area network
EP1263183A1 (en) * 2001-06-01 2002-12-04 Alcatel Processor system, method and computer program product for monitoring remote terminal
CN101765102B (en) * 2002-01-21 2014-07-02 西斯威尔国际有限公司 Method for changing subscription and system
WO2003061236A1 (en) * 2002-01-21 2003-07-24 Nokia Corporation Method and system for changing a subscription
CN100367736C (en) * 2002-04-30 2008-02-06 艾利森电话股份有限公司 Method and apparatus for connecting a workstation to a wide area network
CN101394401B (en) * 2002-05-17 2013-10-16 西蒙公司 System and method for provisioning universal stateless digital and computing services
DE10341362A1 (en) * 2003-09-08 2005-04-07 Siemens Ag Method for charging a service in a packet data network
US20050138117A1 (en) * 2003-12-18 2005-06-23 Samsung Electronics Co., Ltd. Method and system for pushing notifications to networked device
CN100411478C (en) * 2005-02-08 2008-08-13 中国移动通信集团公司 Method for realizing communication QOS based on user request
US8868740B2 (en) * 2006-09-29 2014-10-21 Nomadix, Inc. Systems and methods for injecting content
KR100973606B1 (en) * 2007-11-16 2010-08-02 주식회사 포스코아이씨티 System and Method for Supporting Connection Multi Host in an Wireless Communication System
JP2012044301A (en) * 2010-08-16 2012-03-01 Nec Engineering Ltd Packet charging device
KR101102434B1 (en) * 2010-11-29 2012-01-05 주식회사 홍익기술단 Making of steel sheathing panel for earth retaining and this and construction technique
US9497082B2 (en) 2011-10-03 2016-11-15 Alcatel Lucent Rules engine evaluation for policy decisions
KR102010624B1 (en) * 2012-11-02 2019-08-13 실버레이크 모빌리티 에코시스템 에스디엔 비에이치디 Method of processing requests for digital services
JP6157222B2 (en) * 2013-05-30 2017-07-05 キヤノン株式会社 Communication device, control method, and program
KR102266570B1 (en) * 2014-05-30 2021-06-18 엘지전자 주식회사 Laundry Treating Apparatus
KR101569908B1 (en) 2014-08-28 2015-11-17 주식회사 케이티 System for setting of bandwidth setting and time reservation
US11936658B2 (en) 2021-11-15 2024-03-19 Bank Of America Corporation Intelligent assignment of a network resource

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065183A2 (en) 1998-06-05 1999-12-16 British Telecommunications Public Limited Company Accounting in a communications network
US6047051A (en) * 1996-11-11 2000-04-04 Nokia Telecommunications Oy Implementation of charging in a telecommunications system
US6085247A (en) * 1998-06-08 2000-07-04 Microsoft Corporation Server operating system for supporting multiple client-server sessions and dynamic reconnection of users to previous sessions using different computers
US6157946A (en) 1996-02-28 2000-12-05 Netzero Inc. Communication system capable of providing user with picture meeting characteristics of user and terminal equipment and information providing device used for the same
US6286039B1 (en) * 1997-08-28 2001-09-04 Cisco Technology, Inc. Automatic static to dynamic IP address and DNS address management for remote communications network access
US20010047392A1 (en) * 1996-06-03 2001-11-29 Thomas Edwin Murphy Jr Multiplexing of clients and applications among multiple servers
US6427174B1 (en) * 1998-11-12 2002-07-30 Cisco Technology, Inc. Dynamic IP addressing and quality of service assurance
US20020152311A1 (en) * 1998-03-04 2002-10-17 Markus Veltman Establishing connections between remote devices with a hypertext transfer protocol
US6513060B1 (en) * 1998-08-27 2003-01-28 Internetseer.Com Corp. System and method for monitoring informational resources
US6539431B1 (en) * 1998-11-12 2003-03-25 Cisco Technology, Inc. Support IP pool-based configuration
US20030061619A1 (en) * 1999-04-01 2003-03-27 Tom Giammaressi Service rate change method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09305514A (en) * 1996-05-20 1997-11-28 Seiko Epson Corp Information processor and server
US5987430A (en) * 1997-08-28 1999-11-16 Atcom, Inc. Communications network connection system and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157946A (en) 1996-02-28 2000-12-05 Netzero Inc. Communication system capable of providing user with picture meeting characteristics of user and terminal equipment and information providing device used for the same
US20010047392A1 (en) * 1996-06-03 2001-11-29 Thomas Edwin Murphy Jr Multiplexing of clients and applications among multiple servers
US6047051A (en) * 1996-11-11 2000-04-04 Nokia Telecommunications Oy Implementation of charging in a telecommunications system
US6286039B1 (en) * 1997-08-28 2001-09-04 Cisco Technology, Inc. Automatic static to dynamic IP address and DNS address management for remote communications network access
US20020152311A1 (en) * 1998-03-04 2002-10-17 Markus Veltman Establishing connections between remote devices with a hypertext transfer protocol
WO1999065183A2 (en) 1998-06-05 1999-12-16 British Telecommunications Public Limited Company Accounting in a communications network
US6085247A (en) * 1998-06-08 2000-07-04 Microsoft Corporation Server operating system for supporting multiple client-server sessions and dynamic reconnection of users to previous sessions using different computers
US6513060B1 (en) * 1998-08-27 2003-01-28 Internetseer.Com Corp. System and method for monitoring informational resources
US6427174B1 (en) * 1998-11-12 2002-07-30 Cisco Technology, Inc. Dynamic IP addressing and quality of service assurance
US6539431B1 (en) * 1998-11-12 2003-03-25 Cisco Technology, Inc. Support IP pool-based configuration
US20030061619A1 (en) * 1999-04-01 2003-03-27 Tom Giammaressi Service rate change method and apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
N. Fujino, et al.; "Mobile Information Service Based on Multi-Agent Architecture," IEICE Transactions on Communications, J.P. Institute Electronics Information and Comm., Eng., Tokyo, vol. E80-B, Oct., 1997.
PCT International Search Report dated Jun. 15, 2001 for International Application No. PCT/US 00 28541, filed Oct. 16, 2000; Applicant-Nomadix, Inc., et al.
PCT International Search Report dated Jun. 15, 2001 for International Application No. PCT/US 00 28541, filed Oct. 16, 2000; Applicant—Nomadix, Inc., et al.
R. J. Edell, et al.; "Billing Users and Pricing for TCP,"IEEE Journal on Selected Areas in Communications vol. 13 (1995) Sep., No. 7, New York, NY.

Cited By (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594107B2 (en) 1997-03-12 2013-11-26 Nomadix, Inc. System and method for establishing network connection
US8027339B2 (en) 1997-03-12 2011-09-27 Nomadix, Inc. System and method for establishing network connection
US8266269B2 (en) 1998-12-08 2012-09-11 Nomadix, Inc. Systems and methods for providing content and services on a network system
US8606917B2 (en) 1998-12-08 2013-12-10 Nomadix, Inc. Systems and methods for providing content and services on a network system
US9160672B2 (en) 1998-12-08 2015-10-13 Nomadix, Inc. Systems and methods for controlling user perceived connection speed
US8266266B2 (en) 1998-12-08 2012-09-11 Nomadix, Inc. Systems and methods for providing dynamic network authorization, authentication and accounting
US8364806B2 (en) 1998-12-08 2013-01-29 Nomadix, Inc. Systems and methods for providing content and services on a network system
US8370477B2 (en) 1998-12-08 2013-02-05 Nomadix, Inc. Systems and methods for providing content and services on a network system
US8156246B2 (en) 1998-12-08 2012-04-10 Nomadix, Inc. Systems and methods for providing content and services on a network system
US8244886B2 (en) 1998-12-08 2012-08-14 Nomadix, Inc. Systems and methods for providing content and services on a network system
US8613053B2 (en) 1998-12-08 2013-12-17 Nomadix, Inc. System and method for authorizing a portable communication device
US8713641B1 (en) 1998-12-08 2014-04-29 Nomadix, Inc. Systems and methods for authorizing, authenticating and accounting users having transparent computer access to a network using a gateway device
US10341243B2 (en) 1998-12-08 2019-07-02 Nomadix, Inc. Systems and methods for providing content and services on a network system
US8725899B2 (en) 1998-12-08 2014-05-13 Nomadix, Inc. Systems and methods for providing content and services on a network system
US10110436B2 (en) 1998-12-08 2018-10-23 Nomadix, Inc. Systems and methods for providing content and services on a network system
US8725888B2 (en) 1998-12-08 2014-05-13 Nomadix, Inc. Systems and methods for providing content and services on a network system
US9548935B2 (en) 1998-12-08 2017-01-17 Nomadix, Inc. Systems and methods for providing content and services on a network system
US8788690B2 (en) 1998-12-08 2014-07-22 Nomadix, Inc. Systems and methods for providing content and services on a network system
US10164940B2 (en) 1999-02-24 2018-12-25 Guest Tek Interactive Entertainment Ltd. Methods and apparatus for providing high speed connectivity to a hotel environment
US9503419B2 (en) 1999-02-24 2016-11-22 Guest Tek Interactive Entertainment Ltd. Methods and apparatus for providing high speed connectivity to a hotel environment
US9705846B2 (en) 1999-02-24 2017-07-11 Guest Tek Interactive Entertainment Ltd. Methods and apparatus for providing high speed connectivity to a hotel environment
US9025599B2 (en) 1999-02-24 2015-05-05 Guest Tek Interactive Entertainment Ltd. Methods and apparatus for providing high speed connectivity to a hotel environment
US8190708B1 (en) 1999-10-22 2012-05-29 Nomadix, Inc. Gateway device having an XML interface and associated method
US20100020685A1 (en) * 1999-10-22 2010-01-28 Nomadix, Inc. Systems and methods for dynamic bandwidth management on a per subscriber basis in a communications network
US8516083B2 (en) 1999-10-22 2013-08-20 Nomadix, Inc. Systems and methods of communicating using XML
US7739383B1 (en) 1999-10-22 2010-06-15 Nomadix, Inc. Systems and methods for dynamic bandwidth management on a per subscriber basis in a communications network
US20100208743A1 (en) * 1999-10-22 2010-08-19 Nomadix, Inc. Systems and methods for dynamic data transfer management on a per subscriber basis in a communications network
US7953857B2 (en) 1999-10-22 2011-05-31 Nomadix, Inc. Systems and methods for dynamic data transfer management on a per subscriber basis in a communications network
US20110199932A1 (en) * 1999-10-22 2011-08-18 Nomadix, Inc. Systems and methods for dynamic data transfer management on a per subscriber basis in a communications network
US10367748B2 (en) 1999-10-22 2019-07-30 Nomadix, Inc. Systems and methods for dynamic data transfer management on a per subscriber basis in a communications network
US7698432B2 (en) 1999-10-22 2010-04-13 Nomadix, Inc. Systems and methods for dynamic bandwidth management on a per subscriber basis in a communications network
US8626922B2 (en) 1999-10-22 2014-01-07 Nomadix, Inc. Systems and methods for dynamic data transfer management on a per subscriber basis in a communications network
US9160674B2 (en) 1999-10-22 2015-10-13 Nomadix, Inc. Systems and methods for dynamic data transfer management on a per subscriber basis in a communications network
US20020049841A1 (en) * 2000-03-03 2002-04-25 Johnson Scott C Systems and methods for providing differentiated service in information management environments
US7376729B2 (en) * 2000-03-23 2008-05-20 Freebit Co., Ltd. System for internet connections, method for calculating connection fees for network connection services, billing system for network connection services, and system for network connection management
US20010025275A1 (en) * 2000-03-23 2001-09-27 Nobuaki Tanaka System for internet connections, method for calculating connection fees for network connection services, billing system for network connection services, and system for network connection management
US20020069272A1 (en) * 2000-05-05 2002-06-06 Kim Steven D. System and method for managing server configurations
US20080052352A1 (en) * 2000-05-05 2008-02-28 Kim Steven D System and Method for Managing Server Configurations
US8799416B2 (en) 2000-05-05 2014-08-05 Web.Com Holding Company, Inc. System and method for managing server configurations
US20080065650A1 (en) * 2000-05-05 2008-03-13 Kim Steven D System and Method for Managing Server Configurations
US8370470B2 (en) 2000-05-05 2013-02-05 Web.Com Holding Company, Inc. System and method for managing server configurations
US20080059614A1 (en) * 2000-05-05 2008-03-06 Kim Steven D System and Method for Managing Server Configurations
US20120184271A1 (en) * 2000-05-30 2012-07-19 Stefano Faccin System And Method Of Controlling Application Level Access Of Subscriber To A Network
US9325720B2 (en) * 2000-05-30 2016-04-26 Nokia Technologies Oy System and method of controlling application level access of subscriber to a network
US20020141420A1 (en) * 2001-03-30 2002-10-03 Sugiarto Basuki Afandi Throttling control system and method
US20080031211A1 (en) * 2001-06-18 2008-02-07 Asawaree Kalavade Method and apparatus for converging local area and wide area wireless data networks
US20020191575A1 (en) * 2001-06-18 2002-12-19 Broadwave, Inc. Method and apparatus for converging local area and wide area wireless data networks
US7782848B2 (en) 2001-06-18 2010-08-24 Tatara Systems, Inc. Method and apparatus for converging local area and wide area wireless data networks
US7239632B2 (en) 2001-06-18 2007-07-03 Tatara Systems, Inc. Method and apparatus for converging local area and wide area wireless data networks
US20030028611A1 (en) * 2001-07-23 2003-02-06 Kenny John G. Multi-task, multi-location networking system
US7171460B2 (en) * 2001-08-07 2007-01-30 Tatara Systems, Inc. Method and apparatus for integrating billing and authentication functions in local area and wide area wireless data networks
US20030051041A1 (en) * 2001-08-07 2003-03-13 Tatara Systems, Inc. Method and apparatus for integrating billing and authentication functions in local area and wide area wireless data networks
US20030079032A1 (en) * 2001-09-10 2003-04-24 John Orsolits Enterprise software gateway
US20030065716A1 (en) * 2001-09-12 2003-04-03 Hiroshi Kyusojin Service providing system and method therefor
US7483960B2 (en) * 2001-09-12 2009-01-27 Sony Corporation System and method for providing a service to a terminal having data format specifications
US20030115339A1 (en) * 2001-10-29 2003-06-19 Takeshi Hodoshima Parameter setting system
US20060073826A1 (en) * 2001-12-11 2006-04-06 Cisco Technology, Inc., A California Corporation System and method for selecting a wireless serving mode
US7127249B2 (en) * 2001-12-11 2006-10-24 Cisco Technology, Inc. System and method for selecting a wireless serving mode
US20030172143A1 (en) * 2002-03-06 2003-09-11 Koji Wakayama Access node apparatus and method for internet using condition analysis
US7734770B2 (en) 2002-04-09 2010-06-08 Cisco Technology, Inc. System and method for monitoring information in a network environment
US7103659B2 (en) * 2002-04-09 2006-09-05 Cisco Technology, Inc. System and method for monitoring information in a network environment
US20030233444A1 (en) * 2002-04-09 2003-12-18 Cisco Technology, Inc. System and method for monitoring information in a network environment
US20060252410A1 (en) * 2002-04-09 2006-11-09 Cisco Technology, Inc. System and Method for Monitoring Information in a Network Environment
US20030212768A1 (en) * 2002-05-09 2003-11-13 Gateway, Inc. System and method for centralizing and synchronizing network configuration data
US20110093940A1 (en) * 2002-05-17 2011-04-21 Simtone Corporation (F/K/A Xds, Inc.) System and method for provisioning universal stateless digital and computing services
US20080071860A1 (en) * 2002-05-17 2008-03-20 Xds Inc. System and method for provisioning universal stateless digital and computing services
US8484695B2 (en) 2002-10-10 2013-07-09 Rpx Corporation System and method for providing access control
US8117639B2 (en) 2002-10-10 2012-02-14 Rocksteady Technologies, Llc System and method for providing access control
US20050261915A1 (en) * 2002-11-22 2005-11-24 Yasuomi Ooki Internet connection system
US8234364B2 (en) * 2002-11-22 2012-07-31 Nec Infrontia Corporation Internet connection system
US7577987B2 (en) * 2002-12-23 2009-08-18 Authernative, Inc. Operation modes for user authentication system based on random partial pattern recognition
US20040119746A1 (en) * 2002-12-23 2004-06-24 Authenture, Inc. System and method for user authentication interface
US20040123151A1 (en) * 2002-12-23 2004-06-24 Authenture, Inc. Operation modes for user authentication system based on random partial pattern recognition
US20040123160A1 (en) * 2002-12-23 2004-06-24 Authenture, Inc. Authentication system and method based upon random partial pattern recognition
US7644433B2 (en) 2002-12-23 2010-01-05 Authernative, Inc. Authentication system and method based upon random partial pattern recognition
US7188314B2 (en) * 2002-12-23 2007-03-06 Authernative, Inc. System and method for user authentication interface
US8978090B2 (en) * 2003-03-12 2015-03-10 Qualcomm Incorporated Multimedia transcoding proxy server for wireless telecommunication system
US20040179605A1 (en) * 2003-03-12 2004-09-16 Lane Richard Doil Multimedia transcoding proxy server for wireless telecommunication system
US7987449B1 (en) * 2003-05-22 2011-07-26 Hewlett-Packard Development Company, L.P. Network for lifecycle management of firmware and software in electronic devices
US20070282998A1 (en) * 2003-07-23 2007-12-06 Haitao Zhu Method for monitoring connection state of user
US7836167B2 (en) * 2003-07-23 2010-11-16 Huawei Technologies Co., Ltd. Method for monitoring connection state of user
US20050086296A1 (en) * 2003-08-15 2005-04-21 Blackboard Inc. Content system and associated methods
US8745222B2 (en) * 2003-08-15 2014-06-03 Blackboard Inc. Content system and associated methods
US8381273B2 (en) 2003-08-20 2013-02-19 Rpx Corporation System and method for providing a secure connection between networked computers
US7624438B2 (en) 2003-08-20 2009-11-24 Eric White System and method for providing a secure connection between networked computers
US8429725B2 (en) 2003-08-20 2013-04-23 Rpx Corporation System and method for providing a secure connection between networked computers
US20050044350A1 (en) * 2003-08-20 2005-02-24 Eric White System and method for providing a secure connection between networked computers
US7512107B2 (en) * 2003-12-17 2009-03-31 Samsung Electronics Co., Ltd Asynchronous mobile communication terminal capable of setting time according to present location information, and asynchronous mobile communication system and method for setting time using the same
US20050135325A1 (en) * 2003-12-17 2005-06-23 Samsung Electronics Co., Ltd. Asynchronous mobile communication terminal capable of setting time according to present location information, and asynchronous mobile communication system and method for setting time using the same
US8543710B2 (en) 2004-03-10 2013-09-24 Rpx Corporation Method and system for controlling network access
US7610621B2 (en) 2004-03-10 2009-10-27 Eric White System and method for behavior-based firewall modeling
US8543693B2 (en) 2004-03-10 2013-09-24 Rpx Corporation System and method for detection of aberrant network behavior by clients of a network access gateway
US20050204169A1 (en) * 2004-03-10 2005-09-15 Tonnesen Steven D. System and method for detection of aberrant network behavior by clients of a network access gateway
US7590728B2 (en) 2004-03-10 2009-09-15 Eric White System and method for detection of aberrant network behavior by clients of a network access gateway
US7509625B2 (en) 2004-03-10 2009-03-24 Eric White System and method for comprehensive code generation for system management
US7665130B2 (en) 2004-03-10 2010-02-16 Eric White System and method for double-capture/double-redirect to a different location
US8397282B2 (en) 2004-03-10 2013-03-12 Rpx Corporation Dynamically adaptive network firewalls and method, system and computer program product implementing same
US8019866B2 (en) 2004-03-10 2011-09-13 Rocksteady Technologies, Llc System and method for detection of aberrant network behavior by clients of a network access gateway
US8578361B2 (en) 2004-04-21 2013-11-05 Palm, Inc. Updating an electronic device with update agent code
US8526940B1 (en) 2004-08-17 2013-09-03 Palm, Inc. Centralized rules repository for smart phone customer care
US8074259B1 (en) * 2005-04-28 2011-12-06 Sonicwall, Inc. Authentication mark-up data of multiple local area networks
US20060282318A1 (en) * 2005-06-10 2006-12-14 Emergency 24, Inc. Method of suspending an internet advertising campaign for an advertised web site when the web site is inaccessible
WO2007000175A1 (en) * 2005-06-28 2007-01-04 Telecom Italia S.P.A. Indication of service availability for a user terminal
US8665885B2 (en) 2005-06-28 2014-03-04 Telecom Italia S.P.A. Indication of service availability for a user terminal
US8732476B1 (en) * 2006-04-13 2014-05-20 Xceedium, Inc. Automatic intervention
US8831011B1 (en) 2006-04-13 2014-09-09 Xceedium, Inc. Point to multi-point connections
US8595794B1 (en) 2006-04-13 2013-11-26 Xceedium, Inc. Auditing communications
US8893110B2 (en) 2006-06-08 2014-11-18 Qualcomm Incorporated Device management in a network
US9081638B2 (en) 2006-07-27 2015-07-14 Qualcomm Incorporated User experience and dependency management in a mobile device
US8752044B2 (en) 2006-07-27 2014-06-10 Qualcomm Incorporated User experience and dependency management in a mobile device
US20080072045A1 (en) * 2006-08-23 2008-03-20 Authernative, Inc. Authentication method of random partial digitized path recognition with a challenge built into the path
US7849321B2 (en) 2006-08-23 2010-12-07 Authernative, Inc. Authentication method of random partial digitized path recognition with a challenge built into the path
US7970891B1 (en) * 2007-01-17 2011-06-28 Google Inc. Tracking links in web browsers
US20080291894A1 (en) * 2007-05-21 2008-11-27 Hisao Chang Methods and apparatus to communicate using a multi-fidelity audio gateway
US20110010311A1 (en) * 2007-05-25 2011-01-13 Zte Corporation Method and System for Charging According to Flow of MBMS
US20090147682A1 (en) * 2007-09-25 2009-06-11 David Salick Bandwidth Managing Router and System
US8700662B2 (en) 2008-02-29 2014-04-15 Accenture Global Services Limited Dynamic profile system for resource access control
US20090222405A1 (en) * 2008-02-29 2009-09-03 Accenture S.P.A Dynamic profile system for resource access control
EP2096798A1 (en) * 2008-02-29 2009-09-02 Accenture Global Services GmbH Dynamic profile system for resource access control
US7979512B2 (en) * 2008-11-07 2011-07-12 Microsoft Corporation Service delivery online
US20100121902A1 (en) * 2008-11-07 2010-05-13 Microsoft Corporation Service delivery online
US20110302632A1 (en) * 2009-01-16 2011-12-08 David Garrett Method and System for Supporting Visitor Access Via a Broadband Gateway
US9167005B2 (en) * 2009-01-16 2015-10-20 Broadcom Corporation Method and system for supporting visitor access via a broadband gateway
US10756422B2 (en) 2009-06-04 2020-08-25 Ubiquiti Inc. Antenna isolation shrouds and reflectors
US9634373B2 (en) 2009-06-04 2017-04-25 Ubiquiti Networks, Inc. Antenna isolation shrouds and reflectors
US9894035B2 (en) 2009-07-07 2018-02-13 Nomadix, Inc. Zone migration in network access
US9141773B2 (en) 2009-07-07 2015-09-22 Nomadix, Inc. Zone migration in network access
US20110030037A1 (en) * 2009-07-07 2011-02-03 Vadim Olshansky Zone migration in network access
US8566912B2 (en) 2009-07-07 2013-10-22 Nomadix, Inc. Zone migration in network access
US10873858B2 (en) 2009-07-07 2020-12-22 Nomadix, Inc. Zone migration in network access
US11949562B2 (en) 2011-01-18 2024-04-02 Nomadix, Inc. Systems and methods for group bandwidth management in a communication systems network
US9118578B2 (en) 2011-01-18 2015-08-25 Nomadix, Inc. Systems and methods for group bandwidth management in a communication systems network
US9301315B1 (en) * 2011-03-09 2016-03-29 Amdocs Software Systems Limited System, method, and computer program for transmitting network communications at a point in time automatically determined based on communication rates
US8761142B2 (en) 2012-10-19 2014-06-24 Ubiquiti Networks, Inc. Distributed seamless roaming in wireless networks
US9730117B2 (en) 2012-10-19 2017-08-08 Ubiquiti Networks, Inc. Distributed seamless roaming in wireless networks
US8879574B2 (en) 2012-10-19 2014-11-04 Ubiquiti Networks, Inc. Distributed seamless roaming in wireless networks
US9008126B2 (en) 2012-10-19 2015-04-14 Ubiquiti Networks, Inc. Distributed seamless roaming in wireless networks
US10165477B2 (en) 2012-10-19 2018-12-25 Ubiquiti Networks, Inc. Distributed seamless roaming in wireless networks
US9258753B2 (en) 2012-10-19 2016-02-09 Ubiquiti Networks, Inc. Distributed seamless roaming in wireless networks
US9543635B2 (en) 2013-02-04 2017-01-10 Ubiquiti Networks, Inc. Operation of radio devices for long-range high-speed wireless communication
US10312598B2 (en) 2013-02-04 2019-06-04 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
US9496620B2 (en) 2013-02-04 2016-11-15 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
US8836601B2 (en) 2013-02-04 2014-09-16 Ubiquiti Networks, Inc. Dual receiver/transmitter radio devices with choke
US9490533B2 (en) 2013-02-04 2016-11-08 Ubiquiti Networks, Inc. Dual receiver/transmitter radio devices with choke
US9397820B2 (en) 2013-02-04 2016-07-19 Ubiquiti Networks, Inc. Agile duplexing wireless radio devices
US11909087B2 (en) 2013-02-04 2024-02-20 Ubiquiti Inc. Coaxial RF dual-polarized waveguide filter and method
US9972912B2 (en) 2013-02-04 2018-05-15 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
US10819037B2 (en) 2013-02-04 2020-10-27 Ubiquiti Inc. Radio system for long-range high-speed wireless communication
US8855730B2 (en) 2013-02-08 2014-10-07 Ubiquiti Networks, Inc. Transmission and reception of high-speed wireless communication using a stacked array antenna
US9373885B2 (en) 2013-02-08 2016-06-21 Ubiquiti Networks, Inc. Radio system for high-speed wireless communication
US10170828B2 (en) 2013-02-08 2019-01-01 Ubiquiti Networks, Inc. Adjustable-tilt housing with flattened dome shape, array antenna, and bracket mount
US11670844B2 (en) 2013-02-08 2023-06-06 Ubiquiti Inc. Adjustable-tilt housing with flattened dome shape, array antenna, and bracket mount
US9293817B2 (en) 2013-02-08 2016-03-22 Ubiquiti Networks, Inc. Stacked array antennas for high-speed wireless communication
US11011835B2 (en) 2013-02-08 2021-05-18 Ubiquiti Inc. Adjustable-tilt housing with flattened dome shape, array antenna, and bracket mount
US9531067B2 (en) 2013-02-08 2016-12-27 Ubiquiti Networks, Inc. Adjustable-tilt housing with flattened dome shape, array antenna, and bracket mount
US11804864B2 (en) 2013-10-11 2023-10-31 Ubiquiti Inc. Wireless radio system optimization by persistent spectrum analysis
US10205471B2 (en) 2013-10-11 2019-02-12 Ubiquiti Networks, Inc. Wireless radio system optimization by persistent spectrum analysis
US9191037B2 (en) 2013-10-11 2015-11-17 Ubiquiti Networks, Inc. Wireless radio system optimization by persistent spectrum analysis
US11057061B2 (en) 2013-10-11 2021-07-06 Ubiquiti Inc. Wireless radio system optimization by persistent spectrum analysis
US10623030B2 (en) 2013-10-11 2020-04-14 Ubiquiti Inc. Wireless radio system optimization by persistent spectrum analysis
US10469495B2 (en) 2014-03-07 2019-11-05 Ubiquiti Inc. Cloud device identification and authentication
US11451545B2 (en) 2014-03-07 2022-09-20 Ubiquiti Inc. Cloud device identification and authentication
US11134082B2 (en) 2014-03-07 2021-09-28 Ubiquiti Inc. Cloud device identification and authentication
US10848490B2 (en) 2014-03-07 2020-11-24 Ubiquiti Inc. Cloud device identification and authentication
US9325516B2 (en) 2014-03-07 2016-04-26 Ubiquiti Networks, Inc. Power receptacle wireless access point devices for networked living and work spaces
US9172605B2 (en) 2014-03-07 2015-10-27 Ubiquiti Networks, Inc. Cloud device identification and authentication
US9787680B2 (en) 2014-03-07 2017-10-10 Ubiquiti Networks, Inc. Cloud device identification and authentication
US10574474B2 (en) 2014-03-07 2020-02-25 Ubiquiti Inc. Integrated power receptacle wireless access point (AP) adapter devices
US10916844B2 (en) 2014-03-17 2021-02-09 Ubiquiti Inc. Array antennas having a plurality of directional beams
US9912053B2 (en) 2014-03-17 2018-03-06 Ubiquiti Networks, Inc. Array antennas having a plurality of directional beams
US9843096B2 (en) 2014-03-17 2017-12-12 Ubiquiti Networks, Inc. Compact radio frequency lenses
US11296407B2 (en) 2014-03-17 2022-04-05 Ubiqsiti Inc. Array antennas having a plurality of directional beams
US9368870B2 (en) 2014-03-17 2016-06-14 Ubiquiti Networks, Inc. Methods of operating an access point using a plurality of directional beams
US11196141B2 (en) 2014-04-01 2021-12-07 Ubiquiti Inc. Compact radio frequency antenna apparatuses
US9912034B2 (en) 2014-04-01 2018-03-06 Ubiquiti Networks, Inc. Antenna assembly
US10566676B2 (en) 2014-04-01 2020-02-18 Ubiquiti Inc. Compact radio frequency antenna apparatuses
US9941570B2 (en) 2014-04-01 2018-04-10 Ubiquiti Networks, Inc. Compact radio frequency antenna apparatuses
US10425536B2 (en) 2014-05-08 2019-09-24 Ubiquiti Networks, Inc. Phone systems and methods of communication
US10868917B2 (en) 2014-05-08 2020-12-15 Ubiquiti Inc. Phone systems and methods of communication
US10367592B2 (en) 2014-06-30 2019-07-30 Ubiquiti Networks, Inc. Wireless radio device alignment tools and methods
US10069580B2 (en) 2014-06-30 2018-09-04 Ubiquiti Networks, Inc. Wireless radio device alignment tools and methods
US11751068B2 (en) 2014-06-30 2023-09-05 Ubiquiti Inc. Methods and tools for assisting in the configuration of a wireless radio network
US11736211B2 (en) 2014-06-30 2023-08-22 Ubiquiti Inc. Wireless radio device alignment tools and methods
US10812204B2 (en) 2014-06-30 2020-10-20 Ubiquiti Inc. Wireless radio device alignment tools and methods
US11296805B2 (en) 2014-06-30 2022-04-05 Ubiquiti Inc. Wireless radio device alignment tools and methods
US10194328B2 (en) 2014-06-30 2019-01-29 Ubiquiti Networks, Inc. Methods and tools for persistent spectrum analysis of an operating radio frequency band
US11076404B2 (en) 2014-08-31 2021-07-27 Ubiquiti Inc. Methods and apparatuses for graphically indicating station efficiency and pseudo-dynamic error vector magnitude information for a network of wireless stations
US10142989B2 (en) 2014-08-31 2018-11-27 Ubiquiti Networks, Inc. Methods and apparatuses for graphically indicating station efficiency and pseudo-dynamic error vector magnitude information for a network of wireless stations
US10182438B2 (en) 2014-08-31 2019-01-15 Ubiquiti Networks, Inc. Methods and apparatuses for graphically indicating station efficiency and pseudo-dynamic error vector magnitude information for a network of wireless stations
US11943755B2 (en) 2014-08-31 2024-03-26 Ubiquiti Inc. Methods and apparatuses for graphically indicating station efficiency and pseudo-dynamic error vector magnitude information for a network of wireless stations
US20160080239A1 (en) * 2014-09-15 2016-03-17 Ooyala, Inc. Real-time, low memory estimation of unique client computers communicating with a server computer
US9893973B2 (en) * 2014-09-15 2018-02-13 Ooyala, Inc. Real-time, low memory estimation of unique client computers communicating with a server computer
US10164332B2 (en) 2014-10-14 2018-12-25 Ubiquiti Networks, Inc. Multi-sector antennas
US11303016B2 (en) 2014-10-14 2022-04-12 Ubiquiti Inc. Multi-sector antennas
US10770787B2 (en) 2014-10-14 2020-09-08 Ubiquiti Inc. Multi-sector antennas
US11336342B2 (en) 2015-02-23 2022-05-17 Ubiquiti Inc. Radio apparatuses for long-range communication of radio-frequency information
US10284268B2 (en) 2015-02-23 2019-05-07 Ubiquiti Networks, Inc. Radio apparatuses for long-range communication of radio-frequency information
US10749581B2 (en) 2015-02-23 2020-08-18 Ubiquiti Inc. Radio apparatuses for long-range communication of radio-frequency information
US11115089B2 (en) 2015-02-23 2021-09-07 Ubiquiti Inc. Radio apparatuses for long-range communication of radio-frequency information
US10136233B2 (en) 2015-09-11 2018-11-20 Ubiquiti Networks, Inc. Compact public address access point apparatuses
US10757518B2 (en) 2015-09-11 2020-08-25 Ubiquiti Inc. Compact public address access point apparatuses
US9680704B2 (en) 2015-09-25 2017-06-13 Ubiquiti Networks, Inc. Compact and integrated key controller apparatus for monitoring networks
US10084238B2 (en) 2015-10-09 2018-09-25 Ubiquiti Networks, Inc. Synchronized multiple-radio antenna systems and methods
US11303037B2 (en) 2015-10-09 2022-04-12 Ubiquiti Inc. Synchronized multiple-radio antenna systems and meihods
US10381739B2 (en) 2015-10-09 2019-08-13 Ubiquiti Networks, Inc. Synchronized multiple-radio antenna systems and methods
US10680342B2 (en) 2015-10-09 2020-06-09 Ubiquiti Inc. Synchronized multiple-radio antenna systems and methods
US9761954B2 (en) 2015-10-09 2017-09-12 Ubiquiti Networks, Inc. Synchronized multiple-radio antenna systems and methods
US10833947B2 (en) 2016-09-12 2020-11-10 Angie Hospitality, Inc. Remotely assigned, bandwidth-limiting internet access apparatus and method
US10237137B2 (en) 2016-09-12 2019-03-19 Edward Linn Helvey Remotely assigned, bandwidth-limiting internet access apparatus and method
USD817313S1 (en) 2016-12-22 2018-05-08 Michael Horito Network access point
US10924641B2 (en) 2017-07-10 2021-02-16 Ubiquiti Inc. Wearable video camera medallion with circular display
US11258764B2 (en) 2017-09-27 2022-02-22 Ubiquiti Inc. Systems for automatic secured remote access to a local network
US11482352B2 (en) 2018-01-09 2022-10-25 Ubiquiti Inc. Quick connecting twisted pair cables
CN110213250B (en) * 2019-05-21 2023-06-09 深圳壹账通智能科技有限公司 Data processing method and terminal equipment
CN110213250A (en) * 2019-05-21 2019-09-06 深圳壹账通智能科技有限公司 Data processing method and terminal device
US11677688B2 (en) 2019-09-13 2023-06-13 Ubiquiti Inc. Augmented reality for internet connectivity installation

Also Published As

Publication number Publication date
KR100559357B1 (en) 2006-03-15
CN1408169A (en) 2003-04-02
DE60029819D1 (en) 2006-09-14
WO2001031883A3 (en) 2002-06-27
ES2269195T3 (en) 2007-04-01
KR20020070268A (en) 2002-09-05
IL149188A (en) 2007-12-03
EP1234425B1 (en) 2006-08-02
JP3880856B2 (en) 2007-02-14
IL149188A0 (en) 2002-11-10
CA2388601A1 (en) 2001-05-03
WO2001031883A2 (en) 2001-05-03
DE60029819T2 (en) 2007-03-01
CA2737890A1 (en) 2001-05-03
ATE335340T1 (en) 2006-08-15
JP2003513522A (en) 2003-04-08
CA2388601C (en) 2011-07-05
CN1233129C (en) 2005-12-21
EP1234425A2 (en) 2002-08-28
AU1088501A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
US6789110B1 (en) Information and control console for use with a network gateway interface
US10341243B2 (en) Systems and methods for providing content and services on a network system
US6636894B1 (en) Systems and methods for redirecting users having transparent computer access to a network using a gateway device having redirection capability
US8266269B2 (en) Systems and methods for providing content and services on a network system
US8516083B2 (en) Systems and methods of communicating using XML
AU1340401A (en) Systems and methods for redirecting users attempting to access a network site
WO2002093837A2 (en) Broadband network service delivery method and device
AU2006207853A1 (en) Systems and methods for redirecting users attempting to access a network site
KR20020075365A (en) Systems and methods for redirecting users attempting to access a network site

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOMADIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHORT, JOEL E.;ROBBINS, BARRY R.;GOLDSTEIN, JOSH J.;AND OTHERS;REEL/FRAME:011049/0752

Effective date: 20000724

AS Assignment

Owner name: COMERICA BANK-CALIFORNIA, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:NOMADIX, INC.;REEL/FRAME:011306/0155

Effective date: 20001120

AS Assignment

Owner name: NOMADIX, INC., CALIFORNIA

Free format text: REASSIGNMENT AND RELEASE OF SECURITY INTEREST;ASSIGNOR:COMERICA BANK, SUCCESSOR BY MERGER TO COMERICA BANK-CALIFORNIA;REEL/FRAME:014683/0209

Effective date: 20031027

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: NTT DOCOMO, INC., JAPAN

Free format text: SECURITY INTEREST;ASSIGNOR:NOMADIX, INC.;REEL/FRAME:036721/0341

Effective date: 20150929

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: NTT DOCOMO, INC., JAPAN

Free format text: MODIFICATION TO PATENT SECURITY AGREEMENT;ASSIGNOR:NOMADIX, INC.;REEL/FRAME:043710/0387

Effective date: 20170829

AS Assignment

Owner name: GATE WORLDWIDE HOLDINGS LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOMADIX, INC.;REEL/FRAME:045113/0928

Effective date: 20180112

Owner name: GATE WORLDWIDE HOLDINGS LLC, NEW YORK

Free format text: ASSIGNMENT OF PATENT SECURITY AGREEMENT;ASSIGNOR:NTT DOCOMO, INC.;REEL/FRAME:045113/0937

Effective date: 20170905

AS Assignment

Owner name: KNOBBE, MARTENS, OLSON & BEAR, LLP, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:NOMADIX, INC.;REEL/FRAME:048655/0621

Effective date: 20190315

AS Assignment

Owner name: NOMADIX, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:KNOBBE, MARTENS, OLSON & BEAR, LLP;REEL/FRAME:050440/0042

Effective date: 20190520

AS Assignment

Owner name: NOMADIX, INC., CALIFORNIA

Free format text: QUITCLAIM;ASSIGNOR:GATE WORLDWIDE HOLDINGS LLC;REEL/FRAME:051095/0529

Effective date: 20191121