WO2002045048A1 - Landing and navigating system with virtual representation of the immediate surroundings - Google Patents

Landing and navigating system with virtual representation of the immediate surroundings

Info

Publication number
WO2002045048A1
WO2002045048A1 PCT/CH2001/000686 CH0100686W WO0245048A1 WO 2002045048 A1 WO2002045048 A1 WO 2002045048A1 CH 0100686 W CH0100686 W CH 0100686W WO 0245048 A1 WO0245048 A1 WO 0245048A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
information
landing
vehicles
obstacles
Prior art date
Application number
PCT/CH2001/000686
Other languages
French (fr)
Inventor
Luca Carlino
Enzo Carlino
Tino Perucchi
Beat Ackermann
Stefano Azzalin
Original Assignee
Karen Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karen Sa filed Critical Karen Sa
Priority to AU2002223353A priority Critical patent/AU2002223353A1/en
Publication of WO2002045048A1 publication Critical patent/WO2002045048A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • G01C23/005Flight directors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • G01S7/06Cathode-ray tube displays or other two dimensional or three-dimensional displays
    • G01S7/20Stereoscopic displays; Three-dimensional displays; Pseudo-three-dimensional displays
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0065Navigation or guidance aids for a single aircraft for taking-off
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids

Definitions

  • the present invention is part of display systems for aircraft, helicopters and hybrids (tilt rotor), more particularly virtual display systems which provide a video display based on the virtual reconstruction of the environment.
  • the main field of use of this system is takeoff, flight, landing in adverse weather conditions with the aim of simplifying the procedures used by these subjects.
  • the procedure of the 'Instrumental Landing System' is, at present, identical for the planes and the helicopters. This causes a traffic jam effect due to the reduced speed of helicopters. In addition, the indication of the instruments allowing the landing is not very user-friendly.
  • This visualization system allows takeoff, flight and landing by providing a virtual image of the environment, obstacles, other vehicles and the path to follow.
  • the improvements brought by this system are mainly: + The on-board installation required is reduced compared to other systems and can be carried on any helicopter or plane, without weight and volume constraints.
  • the system can be used without and with installation on the ground.
  • the installation on the ground is in any case less complex than the existing ones and it can be installed where traffic management is required.
  • the system therefore proposes to separate the procedures, in order to free up the time and space occupied by the helicopters. To achieve this, it is possible to exploit the performance of the helicopter, such as a very low landing speed and hovering. This allows, on the one hand, to land manually with almost zero visibility and anywhere and, on the other hand, to redefine the concept of instrument flight.
  • HMD Helmet
  • the system visualizes the environment, the other vehicles and the trajectory to follow - not necessarily straight - in three dimensions.
  • 3D visualization of the terrain, obstacles (high voltage cables, antennas, etc.) and the trajectory allows the flight to be carried out safely.
  • the pilot can benefit from the same display details as on take-off.
  • the system mounted on a helicopter makes it possible to calculate the parameters necessary for the reconstruction of the virtual image and for communication with other fixed and mobile stations.
  • the parameters for positioning are calculated using information received from the DGPS, an inertial platform, a radio altimeter, an altimeter and a system that measures the position of the head of the pilot.
  • interfaces to instruments providing other information are planned.
  • the system is equipped with two radio interfaces for communication between the different vehicles and for communication with the fixed station. Separation of airport traffic is guaranteed with multiple CDMA access (division multiple access code). Each airport has its own code which is known by the systems on board helicopters.
  • This interface is part of a wireless network which connects all fixed and mobile equipment.
  • This network allows the exchange of information on the positioning of other vehicles and instructions from the centralized fixed control station, but not necessarily present.
  • Each member has a unique address allowing them to identify themselves and label their messages.
  • the usefulness of this radio interface is to be able dynamically update the image from the pilot's point of view, by adding objects located in the same airspace, and a possible trajectory to guide the pilot in his landing. Messages received by other members of the wireless network are used for this update.
  • All the information necessary for viewing the scene is recorded in a database containing the description of the terrain and a database for obstacles. It is possible to update the obstacle database using the radio interface.
  • the position of the helicopter is calculated using the information thus received. Since the frequency of arrival of information from a DGPS is too low for real-time refreshment, an inertial platform is used to receive the necessary parameters and thus allow interpolation of the flight path. In the event of a DGPS signal loss, position measurement is guaranteed with information from the inertial platform alone or by combining it with data from additional instruments.
  • the ground station commanded by airport staff, is responsible for the synchronization of air traffic. Depending on the type of message received from the helicopter
  • the accuracy of positioning during the landing phase depends on the presence of the station on the ground.
  • the precision guaranteed with DGPS (1m) is improved to 1 cm by using the functionalities of the ground station.
  • the on-board system can also be connected to the flight director for calculating data for the autopilot.
  • the on-board system has a command interface for configuring and controlling various display and flight parameters: planning and display of the trajectory of a flight in three dimensions, display of a 'moving map', display of the rear view to guarantee a 360 ° view, display of flight parameters and the trajectory imposed by the ground station.
  • the position is calculated using the DGPS position information ( Figure 1, block 1). This position is available a maximum of 5 times per second.
  • the platform inertial form ( Figure 1, block 2) provides the information necessary to know the speeds in the three axes and the coordinates, in order to be able to interpolate the points until the next DGPS message.
  • the inertial platform also provides the inclinations in the three axes which are thus used for the display and the transposition of the speeds on the reference frame.
  • DGPS information is missing, only the information from the inertial platform, combined with the other instruments, is used to calculate the position. If the helicopter is hovering, information from the inertial platform is used to filter the position jump caused by the DGPS error.
  • the radio altimeter (figure 1, block 3) allows, as a first functionality, to check the height given by the DGPS or to replace it in case of loss of the DGPS signal.
  • the sensors for measuring the position of the head allow the display to be adapted according to the pilot's real view.
  • the command interface ( Figure 1, block 5) is used to configure and control the on-board system.
  • the command interface makes it possible to configure and control various flight display parameters: planning and display of the trajectory of a flight in three dimensions ( Figure 2), display of a moving map ( Figure 3), display of the rear view to guarantee a 360 ° view (figure 3), display of flight parameters (figure 3), application or not of the texture (figure 4) and the trajectory imposed by the ground station
  • the control display ( Figure 1, block 8) is shown as the display interface for the control interface.
  • the system contains a database including terrain modeling.
  • the display part ( Figure 1, block 11) dynamically loads the corresponding part when the pilot sees the database.
  • the obstacle database is used to display interesting obstacles and points
  • the virtual scene is displayed with a virtual screen mounted on the pilot's helmet (Figure 1, block 12).
  • This screen is transparent and thus allows to have the real image and virtual superimposed. In this way, the pilot can take advantage of features such as viewing obstacles even in favorable weather conditions.
  • Communication ( Figure 1, block ⁇ ) between members of the wireless network is based on a concurrent access protocol, detecting possible collisions (between messages). Each vehicle sends its position, flight direction, speed and identification with a given interval, so that all vehicles know the positions of others in their immediate environment (range of the radio interface). This information will be used to add the vehicles to the scene.
  • Each airport has its own code which is known by the systems on board helicopters.
  • the ground station establishes a connection with the vehicle the first time it receives information about its position. This establishment attempt is repeated if the vehicle does not complete the request using the station's CDMA code.
  • the communication system with the ground station allows the exchange of information on the trajectory to be followed, new obstacles, modeling of the airport in question and any information related to the location.
  • Figure 1 shows the block diagram of the on-board system mounted on the helicopter or aircraft.
  • Figure 2 shows a screenshot with a 3D trajectory determining the path to follow to land.
  • Figure 3 shows a screenshot of the moving map and the rear view with the texture applied.
  • Figure 4 is a screenshot showing a terrain without texture applied with the visualization of an obstacle (transport cable).
  • Figure 5 is a screenshot of the model of some buildings without texture.

Abstract

The invention concerns a landing system enabling navigation and landing by supplying a virtual image of the immediate surroundings, obstacles, other vehicles, ground navigating stations (VOR, NDB, and the like), standard reporting points, landing and take-off procedures with standard instruments and the trajectory to follow.

Description

DescriptionDescription
Titretitle
Système d'atterrissage et de navigation avec représentation virtuelle de l'environnementLanding and navigation system with virtual representation of the environment
Domaine techniqueTechnical area
La présente invention fait partie des systèmes d'affichage pour avions, hélicoptères et hybrides (tilt rotor), plus particulièrement des systèmes de visualisation virtuelle qui fournissent un affichage vidéo basé sur la reconstitution virtuelle de l'environnement. Le domaine d'utilisation principal de ce système est le décollage, le vol, l'atterrissage dans des conditions météorologiques défavorables avec le but de simplifier les procédures utilisées par ces sujets.The present invention is part of display systems for aircraft, helicopters and hybrids (tilt rotor), more particularly virtual display systems which provide a video display based on the virtual reconstruction of the environment. The main field of use of this system is takeoff, flight, landing in adverse weather conditions with the aim of simplifying the procedures used by these subjects.
Etat de la techniqueState of the art
La procédure du 'Instrumental Landing System' (ILS) est, à l'heure actuelle, identique pour les avions et les hélicoptères. Ceci provoque un effet bouchon dû à la vitesse réduite de hélicoptères. De plus, l'indication des instruments permettant l'atterrissage est peu conviviale.The procedure of the 'Instrumental Landing System' (ILS) is, at present, identical for the planes and the helicopters. This causes a traffic jam effect due to the reduced speed of helicopters. In addition, the indication of the instruments allowing the landing is not very user-friendly.
Présentation détaillée de l'inventionDetailed presentation of the invention
Ce système de visualisation permet le décollage, le vol et l'atterrissage en fournissant une image virtuelle de l'environnement, des obstacles, des autres véhicules et de la trajectoire à suivre.This visualization system allows takeoff, flight and landing by providing a virtual image of the environment, obstacles, other vehicles and the path to follow.
Les améliorations apportées par ce système sont principalement: + L'installation de bord nécessaire est réduite par rapport aux autres systèmes et peut être embarquée sur n'importe quel hélicoptère ou avion, sans contrainte de poids et de volume. + Le système peut être employé sans et avec installation au sol. L'installation au sol est de toute façon moins complexe que celles existantes et elle peut être installée là où une gestion du trafic est requise. + Etant donné que jusqu'à maintenant la procédure d'atterrissage est identique pour les hélicoptères et les avions, un effet bouchon peut se produire dans la zone d'atterrissage, en raison de la grande différence de vitesse. Ce même problème se pose lors du décollage et de la navigation. Le système propose donc de séparer les procédures, afin de libérer le temps et l'espace occupés par les hélicoptères. Pour y parvenir, il est possible d'exploiter les performances de l'hélicoptère, comme une vitesse d'atterrissage très basse et le vol stationnaire. Cela permet, d'une part, de se poser manuellement avec une visibilité presque nulle et n'importe où et, d'autre part, de redéfinir la notion de vol aux instruments.The improvements brought by this system are mainly: + The on-board installation required is reduced compared to other systems and can be carried on any helicopter or plane, without weight and volume constraints. + The system can be used without and with installation on the ground. The installation on the ground is in any case less complex than the existing ones and it can be installed where traffic management is required. + Since until now the landing procedure is identical for helicopters and airplanes, a traffic jam effect can occur in the landing zone, due to the large difference in speed. This same problem occurs poses during takeoff and navigation. The system therefore proposes to separate the procedures, in order to free up the time and space occupied by the helicopters. To achieve this, it is possible to exploit the performance of the helicopter, such as a very low landing speed and hovering. This allows, on the one hand, to land manually with almost zero visibility and anywhere and, on the other hand, to redefine the concept of instrument flight.
Partant d'un modèle 3D du terrain et des obstacles, ce système reconstitue et affiche la vue du pilote en temps réel sur un écran virtuel monté sur le casque (HMD : HelmetStarting from a 3D model of the terrain and obstacles, this system reconstructs and displays the pilot's view in real time on a virtual screen mounted on the helmet (HMD: Helmet
Mounted Display).Mounted Display).
Lors du décollage, le système visualise l'environnement, les autres véhicules et la trajectoire à suivre - pas nécessairement droite - en trois dimensions. Pendant le vol, la visualisation 3D du terrain, des obstacles (câbles de haute tension, antennes, etc.) et de la trajectoire permet d'effectuer le vol en toute sécurité. Pendant la phase d'atterrissage, le pilote peut profiter des mêmes détails d'affichage qu'au décollage.During takeoff, the system visualizes the environment, the other vehicles and the trajectory to follow - not necessarily straight - in three dimensions. During the flight, 3D visualization of the terrain, obstacles (high voltage cables, antennas, etc.) and the trajectory allows the flight to be carried out safely. During the landing phase, the pilot can benefit from the same display details as on take-off.
Le système décrit jusqu'à ce point permet d'atterrir et de décoller avec une visibilité réduite au minimum, en tout endroit (aéroports, héliports, ports avions, hôpitaux, refuges de montagne, practice de golf, etc.).The system described up to this point makes it possible to land and take off with visibility reduced to a minimum, in any location (airports, heliports, aircraft ports, hospitals, mountain huts, golf practice, etc.).
Le système monté sur un hélicoptère permet de calculer les paramètres nécessaires pour la reconstitution de l'image virtuelle et pour la communication avec les autres stations fixes et mobiles. Les paramètres pour le positionnement sont calculés à l'aide des informations reçues du DGPS, d'une plate-forme inertielle, d'un radio altimètre, d'un altimètre et d'un système qui permet de mesurer la position de la tête du pilote. Néanmoins, des interfaces vers des instruments fournissant d'autres informations (air speed, vertical speed, heading, radar météo, etc.) sont prévues.The system mounted on a helicopter makes it possible to calculate the parameters necessary for the reconstruction of the virtual image and for communication with other fixed and mobile stations. The parameters for positioning are calculated using information received from the DGPS, an inertial platform, a radio altimeter, an altimeter and a system that measures the position of the head of the pilot. However, interfaces to instruments providing other information (air speed, vertical speed, heading, weather radar, etc.) are planned.
Le système est équipé de deux interfaces radio pour la communication entre les différents véhicules et pour la communication avec la station fixe. La séparation du trafic des aéroports est garantie avec un accès multiple CDMA (code division multiple access). Chaque aéroport possède sont propre code qui est connu par les systèmes embarqués sur les hélicoptères.The system is equipped with two radio interfaces for communication between the different vehicles and for communication with the fixed station. Separation of airport traffic is guaranteed with multiple CDMA access (division multiple access code). Each airport has its own code which is known by the systems on board helicopters.
Cette interface fait partie d'un réseau sans fil qui relie tous les équipements fixes et mobiles. Ce réseau permet l'échange d'informations sur les positionnements des autres véhicules et des instructions venant de la station de contrôle fixe centralisée, mais pas nécessairement présente. Chaque membre possède une adresse unique permettant de s'identifier et d'étiqueter ses messages. L'utilité de cette interface radio est de pouvoir mettre à jour dynamiquement l'image du point de vue du pilote, en ajoutant les objets se trouvant dans le même espace aérien, et une éventuelle trajectoire pour guider le pilote dans son atterrissage. Les messages reçus par les autres membres du réseau sans fil sont utilisés pour cette mise à jour.This interface is part of a wireless network which connects all fixed and mobile equipment. This network allows the exchange of information on the positioning of other vehicles and instructions from the centralized fixed control station, but not necessarily present. Each member has a unique address allowing them to identify themselves and label their messages. The usefulness of this radio interface is to be able dynamically update the image from the pilot's point of view, by adding objects located in the same airspace, and a possible trajectory to guide the pilot in his landing. Messages received by other members of the wireless network are used for this update.
Toutes les informations nécessaires pour la visualisation de la scène sont enregistrées dans une base de données contenant la description du terrain et une base de données pour les obstacles. Il est possible d'actualiser la base de données des obstacles au moyen de l'interface radio.All the information necessary for viewing the scene is recorded in a database containing the description of the terrain and a database for obstacles. It is possible to update the obstacle database using the radio interface.
A la présence du signal DGPS, la position de l'hélicoptère est calculée utilisant les informations ainsi reçues. Etant donné que la fréquence des arrivées des informations d'un DGPS est trop faible pour un rafraîchissement en temps réel, une plate-forme inertielle est utilisée pour recevoir les paramètres nécessaires et ainsi permettre une interpolation de la trajectoire de vol. Dans le cas d'une perte de signal DGPS, la mesure de la position est garantie avec les informations de la plate-forme inertielle toute seule ou en la combinant avec les données des instruments supplémentaires.When the DGPS signal is present, the position of the helicopter is calculated using the information thus received. Since the frequency of arrival of information from a DGPS is too low for real-time refreshment, an inertial platform is used to receive the necessary parameters and thus allow interpolation of the flight path. In the event of a DGPS signal loss, position measurement is guaranteed with information from the inertial platform alone or by combining it with data from additional instruments.
La station au sol, commandée par le personnel de l'aéroport, s'occupe de la synchronisation du trafic aérien. En fonction du type de message reçu de l'hélicoptèreThe ground station, commanded by airport staff, is responsible for the synchronization of air traffic. Depending on the type of message received from the helicopter
(intention d'atterrissage, de passage, décollage, urgence, etc.), elle intervient sur le système de visualisation, soit en proposant une trajectoire à suivre, soit en envoyant des messages à afficher.(intention of landing, passage, takeoff, emergency, etc.), it intervenes on the display system, either by proposing a trajectory to follow, or by sending messages to display.
La précision du positionnement pendant la phase d'atterrissage dépend de la présence de la station au sol. La précision garantie avec DGPS (1m) est améliorée à 1 cm en utilisant les fonctionnalités de la station au sol.The accuracy of positioning during the landing phase depends on the presence of the station on the ground. The precision guaranteed with DGPS (1m) is improved to 1 cm by using the functionalities of the ground station.
Le système embarqué peut également être connecté au 'flight director" pour le calcul de données pour le pilote automatique.The on-board system can also be connected to the flight director for calculating data for the autopilot.
Le système embarqué dispose d'une interface de commande permettant de configurer et de contrôler différents paramètres d'affichage et de vol : planification et affichage de la trajectoire d'un vol en trois dimensions, affichage d'un 'moving map', affichage de la vue arrière pour garantir une vue sur 360°, affichage de paramètres de vol et de la trajectoire imposée par la station au sol.The on-board system has a command interface for configuring and controlling various display and flight parameters: planning and display of the trajectory of a flight in three dimensions, display of a 'moving map', display of the rear view to guarantee a 360 ° view, display of flight parameters and the trajectory imposed by the ground station.
Réalisation de l'inventionRealization of the invention
Le calcul de la position est effectué en utilisant les informations de position du DGPS (figure 1, bloc 1). Cette position est disponible au maximum 5 fois par seconde. La plate- forme inertielle (figure 1, bloc 2) fournit les informations nécessaires pour connaître les vitesses dans les trois axes et les coordonnées, afin de pouvoir interpoler les points jusqu'au prochain message du DGPS. La plate-forme inertielle fournit aussi les inclinaisons dans les trois axes qui sont ainsi utilisées pour l'affichage et la transposition des vitesses sur le repère de référence.The position is calculated using the DGPS position information (Figure 1, block 1). This position is available a maximum of 5 times per second. The platform inertial form (Figure 1, block 2) provides the information necessary to know the speeds in the three axes and the coordinates, in order to be able to interpolate the points until the next DGPS message. The inertial platform also provides the inclinations in the three axes which are thus used for the display and the transposition of the speeds on the reference frame.
Si l'information du DGPS est absente, seules les informations de la plate-forme inertielle, combinées avec les autres instruments, sont utilisées pour le calcul de la position. Si l'hélicoptère est en vol stationnaire, les informations de la plate-forme inertielle sont utilisées pour filtrer le saut de position causé par l'erreur du DGPS.If the DGPS information is missing, only the information from the inertial platform, combined with the other instruments, is used to calculate the position. If the helicopter is hovering, information from the inertial platform is used to filter the position jump caused by the DGPS error.
Le radio altimètre (figure 1, bloc 3) permet, comme première fonctionnalité, de vérifier la hauteur donnée par le DGPS ou de la remplacer en cas de perte du signal DGPS.The radio altimeter (figure 1, block 3) allows, as a first functionality, to check the height given by the DGPS or to replace it in case of loss of the DGPS signal.
Les capteurs pour la mesure de la position de la tête (figure 1, bloc 4) permettent d'adapter l'affichage selon la vue réelle du pilote.The sensors for measuring the position of the head (Figure 1, block 4) allow the display to be adapted according to the pilot's real view.
Tous ces paramètres et ceux ajoutés en option (figure 1, bloc 13) sont connectés au système de calcul du point de vue (figure 1, bloc 9).All these parameters and those added as an option (figure 1, block 13) are connected to the calculation system from the point of view (figure 1, block 9).
L'interface de commande (figure 1, bloc 5) permet de configurer et de contrôler le système embarqué. L'interface de commande permet de configurer et de contrôler différents paramètres d'affichage de vol : planification et affichage de la trajectoire d'un vol en trois dimensions (figure 2), affichage d'un moving map (figure 3), affichage de la vue arrière pour garantir une vue sur 360° (figure 3), affichage de paramètres de vol (figure 3), application ou non de la texture (figure 4) et de la trajectoire imposée par la station au solThe command interface (Figure 1, block 5) is used to configure and control the on-board system. The command interface makes it possible to configure and control various flight display parameters: planning and display of the trajectory of a flight in three dimensions (Figure 2), display of a moving map (Figure 3), display of the rear view to guarantee a 360 ° view (figure 3), display of flight parameters (figure 3), application or not of the texture (figure 4) and the trajectory imposed by the ground station
(figure 2).(figure 2).
L'affichage de contrôle (figure 1, bloc 8) figure comme interface de visualisation pour l'interface de commande.The control display (Figure 1, block 8) is shown as the display interface for the control interface.
Tout le contrôle du système est centralisé à un point (figure 1, bloc 10).All control of the system is centralized at one point (Figure 1, block 10).
Le système contient une base de données comprenant la modélisation du terrain. En fonction de la position de l'hélicoptère, la partie d'affichage (figure 1, bloc 11) charge dynamiquement la partie correspondante à la vue du pilote de la base de données.The system contains a database including terrain modeling. Depending on the position of the helicopter, the display part (Figure 1, block 11) dynamically loads the corresponding part when the pilot sees the database.
La base de données des obstacles sert à afficher des obstacles et points intéressantsThe obstacle database is used to display interesting obstacles and points
(aéroport, hôpitaux, etc.). Ses informations sont mises à jour dynamiquement et peuvent être chargées à partir de la station au sol (figurel, bloc 14).(airport, hospitals, etc.). Its information is updated dynamically and can be loaded from the ground station (figurel, block 14).
L'affichage de la scène virtuelle est réalisé avec un écran virtuel monté sur le casque du pilote (figure 1, bloc 12). Cet écran est transparent et permet ainsi d'avoir l'image réelle et virtuelle superposées. De cette façon, le pilote peut profiter des fonctionnalités comme la visualisation des obstacles même dans des conditions météorologiques favorables. La communication (figure 1, blocβ) entre les membres du réseau sans fil est basée sur un protocole à accès concourant, détectant les éventuelles collisions (entre messages). Chaque véhicule envoie avec un intervalle donné sa position, sa direction de vol, sa vitesse et son identification, de façon à ce que tous les véhicules connaissent les positions des autres dans leur environnement proche (portée de l'interface radio). Ces informations seront utilisées pour ajouter les véhicules dans la scène.The virtual scene is displayed with a virtual screen mounted on the pilot's helmet (Figure 1, block 12). This screen is transparent and thus allows to have the real image and virtual superimposed. In this way, the pilot can take advantage of features such as viewing obstacles even in favorable weather conditions. Communication (Figure 1, blockβ) between members of the wireless network is based on a concurrent access protocol, detecting possible collisions (between messages). Each vehicle sends its position, flight direction, speed and identification with a given interval, so that all vehicles know the positions of others in their immediate environment (range of the radio interface). This information will be used to add the vehicles to the scene.
La séparation du trafic des aéroports est garantie avec un accès multiple CDMA (code division multiple access). Chaque aéroport possède sont propre code qui est connu par les systèmes embarqués sur les hélicoptères. La station au sol établit une connexion avec le véhicule la première fois qu'elle reçoit les informations concernant sa position. Cette tentative d'établissement est répétée si le véhicule ne quittance pas la requête en utilisant le code CDMA de la station.Separation of airport traffic is guaranteed with multiple CDMA access (division multiple access code). Each airport has its own code which is known by the systems on board helicopters. The ground station establishes a connection with the vehicle the first time it receives information about its position. This establishment attempt is repeated if the vehicle does not complete the request using the station's CDMA code.
Le système de communication avec la station au sol permet l'échange d'informations sur la trajectoire à suivre, les nouveaux obstacles, la modélisation de l'aéroport en question et d'éventuelles informations liées à l'endroit.The communication system with the ground station allows the exchange of information on the trajectory to be followed, new obstacles, modeling of the airport in question and any information related to the location.
Liste des imagesList of images
Figure 1 présente le schéma bloc du système embarqué monté sur l'hélicoptère ou l'avion.Figure 1 shows the block diagram of the on-board system mounted on the helicopter or aircraft.
Figure 2 montre une capture d'écran avec une trajectoire 3D déterminant le chemin à suivre pour atterrir.Figure 2 shows a screenshot with a 3D trajectory determining the path to follow to land.
Figure 3 montre une capture d'écran du moving map et de la vue arrière avec la texture appliquée.Figure 3 shows a screenshot of the moving map and the rear view with the texture applied.
Figure 4 est une capture d'écran montrant un terrain sans texture appliquée avec la visualisation d'un obstacle (câble de transport).Figure 4 is a screenshot showing a terrain without texture applied with the visualization of an obstacle (transport cable).
Figure 5 est une capture d'écran du modèle de quelques immeubles sans texture. Figure 5 is a screenshot of the model of some buildings without texture.

Claims

Revendicationsclaims
PréambulePreamble
1) Procédé de navigation à bord d'un avion ou d'un hélicoptère utilisant un système de reconstitution de la vue du pilote, en temps réel, permettant d'effectuer le décollage, le vol et l'atterrissage dans des conditions météorologiques défavorables en utilisant :1) A method of navigation on board an airplane or a helicopter using a pilot's vision reconstruction system, in real time, making it possible to take off, fly and land in unfavorable meteorological conditions. using:
• l'acquisition de la position géographique du véhicule en temps réel ;• acquisition of the geographic position of the vehicle in real time;
• l'affichage en temps réel d'un monde virtuel sur un écran transparent monté sur le casque ;• real-time display of a virtual world on a transparent screen mounted on the helmet;
• une base de données du terrain contenant toutes les informations nécessaires pour le rendu de l'image ;• a field database containing all the information necessary for rendering the image;
• une base de données des obstacles ;• a database of obstacles;
• une ou plusieurs textures qui permettent une représentation réaliste.• one or more textures which allow a realistic representation.
2) Procédé selon la revendication 1, caractérisé par2) Method according to claim 1, characterized by
• l'introduction de la trajectoire 3D à suivre• the introduction of the 3D trajectory to follow
3) Procédé selon l'une des revendications précédentes, caractérisé par3) Method according to one of the preceding claims, characterized by
• l'affichage de la vue de bas• display of the bottom view
• l'affichage de la vue arrière• rear view display
• l'affichage d'informations concernant le vol• display of flight information
4) Procédé selon l'une des revendications précédentes, caractérisé parla suppression de la texture de ladite image, afin d'améliorer la perception de la morphologie du terrain4) Method according to one of the preceding claims, characterized by removing the texture of said image, in order to improve the perception of the morphology of the terrain
5) Procédé selon l'une des revendications précédentes, caractérisé par l'échange d'informations concernant la position entre les véhicules5) Method according to one of the preceding claims, characterized by the exchange of information concerning the position between the vehicles
6) Procédé selon l'une des revendications précédentes, caractérisé par • l'échange des informations spécifiques au décollage et à l'atterrissage6) Method according to one of the preceding claims, characterized by • exchange of specific take-off and landing information
• l'échange des informations spécifiques à l'état de la place d'atterrissage• exchange of information specific to the state of the landing site
7) Procédé selon l'une des revendications précédentes, caractérisé par la mise à jour dynamique de la base de données des obstacles7) Method according to one of the preceding claims, characterized by dynamic updating of the obstacle database
8) Procédé selon l'une des revendications précédentes, caractérisé par la combinaison et l'interpolation entre différents instruments de mesure de la position8) Method according to one of the preceding claims, characterized by the combination and interpolation between different position measuring instruments
9) Procédé selon l'une des revendications précédentes, caractérisé par la mise en évidence des obstacles qui sont potentiellement des sources de collision9) Method according to one of the preceding claims, characterized by highlighting obstacles which are potentially sources of collision
10) Procédé selon la revendication 2, caractérisé par la commande du pilote automatique en utilisant la trajectoire proposée10) Method according to claim 2, characterized by controlling the autopilot using the proposed trajectory
11) Procédé selon l'une des revendications précédentes, caractérisé par11) Method according to one of the preceding claims, characterized by
• des moyens de mesure de la position actuelle du véhicule• means for measuring the current position of the vehicle
• des capteurs pour acquérir la situation actuelle du véhicule• sensors to acquire the current situation of the vehicle
• des capteurs pour mesurer la position actuelle de la tête• sensors to measure the current head position
• un panneau de contrôle faisant partie de l'interface homme/machine• a control panel forming part of the man / machine interface
• un affichage de contrôle faisant partie de l'interface homme/machine• a control display as part of the man / machine interface
• un système de communication radio automatique entre véhicules permettant d'échanger les informations de position des véhicules en question• an automatic radio communication system between vehicles to exchange the position information of the vehicles in question
• un système de communication radio automatique entre véhicules et la centrale fixe• an automatic radio communication system between vehicles and the fixed central
12) Procédé selon l'une des revendications précédentes, caractérisé par un système central fixe, placé à des endroits d'intérêt afin de déterminer la trajectoire à suivre et les obstacles à signaler 12) Method according to one of the preceding claims, characterized by a fixed central system, placed at places of interest to determine the path to follow and the obstacles to report
PCT/CH2001/000686 2000-11-30 2001-11-26 Landing and navigating system with virtual representation of the immediate surroundings WO2002045048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002223353A AU2002223353A1 (en) 2000-11-30 2001-11-26 Landing and navigating system with virtual representation of the immediate surroundings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH23282000 2000-11-30
CH2328/00 2000-11-30

Publications (1)

Publication Number Publication Date
WO2002045048A1 true WO2002045048A1 (en) 2002-06-06

Family

ID=4568604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2001/000686 WO2002045048A1 (en) 2000-11-30 2001-11-26 Landing and navigating system with virtual representation of the immediate surroundings

Country Status (2)

Country Link
AU (1) AU2002223353A1 (en)
WO (1) WO2002045048A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2874371A1 (en) * 2004-08-19 2006-02-24 Airbus France DISPLAY SYSTEM FOR AN AIRCRAFT
FR2875916A1 (en) * 2004-09-28 2006-03-31 Eurocopter France METHOD AND DEVICE FOR AIDING THE STEERING OF A ROTATING SAILBOAT AIRCRAFT IN THE VICINITY OF A POSITION OR TAKE-OFF POINT
EP1650534A1 (en) 2004-10-23 2006-04-26 EADS Deutschland GmbH Method for supporting helicopter pilots by visual landing under Brown-Out or White-Out conditions
FR2888342A1 (en) * 2005-07-08 2007-01-12 Thales Sa Large-size civil aviation aircraft e.g. Boeing 747, taxiing assisting optoelectronic device for airport, has head-up collimator displaying 3D symbols to inform pilot of trajectory to be taken in bend and location of aircraft on traffic lane
DE102007014015A1 (en) * 2007-03-23 2008-09-25 Eads Deutschland Gmbh Human-machine interface for pilot support during takeoff and landing of a vehicle with a reduced external view
EP2431960A3 (en) * 2010-09-20 2015-07-15 Honeywell International Inc. Ground navigational display, system and method displaying buildings in three-dimensions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296854A (en) * 1991-04-22 1994-03-22 United Technologies Corporation Helicopter virtual image display system incorporating structural outlines
US5566073A (en) * 1994-07-11 1996-10-15 Margolin; Jed Pilot aid using a synthetic environment
US5838262A (en) * 1996-12-19 1998-11-17 Sikorsky Aircraft Corporation Aircraft virtual image display system and method for providing a real-time perspective threat coverage display
EP0911647A2 (en) * 1997-08-28 1999-04-28 Japan Defence Agency Flight system and system for forming virtual images for aircraft
DE19831452C1 (en) * 1998-07-14 2000-03-09 Eurocopter Deutschland Procedures to support flight guidance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296854A (en) * 1991-04-22 1994-03-22 United Technologies Corporation Helicopter virtual image display system incorporating structural outlines
US5566073A (en) * 1994-07-11 1996-10-15 Margolin; Jed Pilot aid using a synthetic environment
US5838262A (en) * 1996-12-19 1998-11-17 Sikorsky Aircraft Corporation Aircraft virtual image display system and method for providing a real-time perspective threat coverage display
EP0911647A2 (en) * 1997-08-28 1999-04-28 Japan Defence Agency Flight system and system for forming virtual images for aircraft
DE19831452C1 (en) * 1998-07-14 2000-03-09 Eurocopter Deutschland Procedures to support flight guidance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2874371A1 (en) * 2004-08-19 2006-02-24 Airbus France DISPLAY SYSTEM FOR AN AIRCRAFT
WO2006024746A1 (en) * 2004-08-19 2006-03-09 Airbus France Display system for aircraft
FR2875916A1 (en) * 2004-09-28 2006-03-31 Eurocopter France METHOD AND DEVICE FOR AIDING THE STEERING OF A ROTATING SAILBOAT AIRCRAFT IN THE VICINITY OF A POSITION OR TAKE-OFF POINT
WO2006035153A1 (en) * 2004-09-28 2006-04-06 Eurocopter Rotary-wing aircraft piloting assistance method and device for use close to a take-off or landing site
US7672758B2 (en) 2004-09-28 2010-03-02 Eurocopter Method and a device for assisting the piloting of a rotary wing aircraft in the vicinity of a landing or takeoff point
EP1650534A1 (en) 2004-10-23 2006-04-26 EADS Deutschland GmbH Method for supporting helicopter pilots by visual landing under Brown-Out or White-Out conditions
US7365652B2 (en) 2004-10-23 2008-04-29 Eads Deutschland Gmbh Method of pilot support in landing helicopters in visual flight under brownout or whiteout conditions
FR2888342A1 (en) * 2005-07-08 2007-01-12 Thales Sa Large-size civil aviation aircraft e.g. Boeing 747, taxiing assisting optoelectronic device for airport, has head-up collimator displaying 3D symbols to inform pilot of trajectory to be taken in bend and location of aircraft on traffic lane
DE102007014015A1 (en) * 2007-03-23 2008-09-25 Eads Deutschland Gmbh Human-machine interface for pilot support during takeoff and landing of a vehicle with a reduced external view
DE102007014015B4 (en) * 2007-03-23 2010-07-01 Eads Deutschland Gmbh Human-machine interface for pilot support during takeoff and landing of a vehicle with a reduced external view
EP2431960A3 (en) * 2010-09-20 2015-07-15 Honeywell International Inc. Ground navigational display, system and method displaying buildings in three-dimensions

Also Published As

Publication number Publication date
AU2002223353A1 (en) 2002-06-11

Similar Documents

Publication Publication Date Title
US7804981B2 (en) Method and system for tracking position of an object using imaging and non-imaging surveillance devices
US8209122B2 (en) System and method for rendering visible features of a target location on a synthetic flight display
US8234068B1 (en) System, module, and method of constructing a flight path used by an avionics system
JP4174559B2 (en) Advanced visibility information providing system and method using satellite image and flight obstacle recognition system and method
US8049644B1 (en) Method for TAWS depiction on SVS perspective displays
US20030036827A1 (en) Light detection and ranging (lidar) mapping system
US20130106832A1 (en) Systems and methods for displaying images with multi-resolution integration
US20130257852A1 (en) Synthetic vision systems and methods for displaying detached objects
EP1626251B1 (en) Method for the display of cartographic information and of aeronautical areas on an aeroplane screen
EP1690242A1 (en) Method for monitoring the development of the flight plan of a co-operating aircraft
US20180096532A1 (en) System and method for virtual reality simulation of vehicle travel
EP1460384A2 (en) Method and apparatus for constructing a synthetic image of the environment of an aircraft and displaying the image on a display of this aircraft
FR3038750A1 (en) METHOD FOR INTEGRATING A NEW NAVIGATION SERVICE IN AN OPEN AIR ARCHITECTURE OPEN ARCHITECTURE SYSTEM OF A CLIENT-SERVER TYPE, IN PARTICULAR A FIM MANUFACTURING SERVICE
FR2926894A1 (en) METHOD OF ESTIMATING AT ANY POINT OF AN AIRCRAFT AIR DATA PATH
FR2787907A1 (en) AID SYSTEM FOR AVOIDING AIRCRAFT COLLISIONS WITH THE GROUND
JP3905835B2 (en) Method and apparatus for displaying real-time navigation information
CN112885153A (en) General aviation safety monitoring system based on multi-network integration
FR3038751A1 (en) METHOD FOR INTEGRATING A CONSTRAINED ROAD OPTIMIZATION APPLICATION IN AN OPEN ARCHITECTURE AIRCRAFT SYSTEM OF CLIENT-TYPE SERVER
KR102012361B1 (en) Method and apparatus for providing digital moving map service for safe navigation of unmanned aerial vehicle
WO2002045048A1 (en) Landing and navigating system with virtual representation of the immediate surroundings
US20210300555A1 (en) Coordinating an aerial search among unmanned aerial vehicles
EP3104125B1 (en) Aircraft navigation system and method for aircraft navigation
EP4014218A1 (en) Aggregating data for unmanned aerial vehicle (uav) navigation
US20140336849A1 (en) System and method for displaying rate-of-climb on an avionics vertical speed indicator
EP3301660A1 (en) System and method for virtual reality simulation of vehicle travel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP