Next Article in Journal
Epigallocatechin Gallate and Glutathione Attenuate Aflatoxin B1-Induced Acute Liver Injury in Ducklings via Mitochondria-Mediated Apoptosis and the Nrf2 Signalling Pathway
Previous Article in Journal
Candidalysin Is the Hemolytic Factor of Candida albicans
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia

by
Carlos A. Cañas
1,2
1
CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Universidad Icesi, Cali 760031, Colombia
2
Fundación Valle del Lili, Unidad de Reumatología, Cali 760032, Colombia
Toxins 2022, 14(12), 875; https://doi.org/10.3390/toxins14120875
Submission received: 2 November 2022 / Revised: 25 November 2022 / Accepted: 3 December 2022 / Published: 15 December 2022

Abstract

:
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Key Contribution: The South American rattlesnake causes a complex envenomation that must be recognized in different areas of knowledge. Crotalus durissus venom is a cocktail of substances with diverse biological effects whose investigation is important for multiple solutions in biomedicine.

1. Introduction

In the present review, various biological and medical aspects related to C. durissus and its subspecies are described: its taxonomy, anatomy, physiology, evolution, epidemiology, and clinical aspects of envenomation in humans. This includes additional descriptions of the main components of its venom and the possible development of drugs based on knowledge of its biological effects.

2. Overview of C. durissus

The description and scientific classification of the snakes of the genus Crotalus began to be developed in the eighteenth century [1]. Carl von Linnaeus in 1758 included snakes in the genus Crotalus that had venomous fangs, widened ventral scales, small subcaudals, and a terminal rattle or “crepitaculum” and identified three species: C. horridus, C. dryinas, and C. durissus. Linnaeus included bibliographical references from authors contemporary to him. A very interesting narration was made by Arnout Vosmaer (1767–1768), curator of the zoological cabinet of Stadholter William V of Holland in The Hague in his book “Description D’Un Serpent À Sonnette De L’Amerique” of 1767, in which a beautiful engraving of this enigmatic animal is appreciated [2]. An extensive bibliographic review of the taxonomic changes of Crotalus has been made [3].
The genus Crotalus includes 30 species, with approximately 70 subspecies [4]. It is geographically distributed from Canada to northern Argentina [5]. The species C. durissus has its greatest geographical distribution from Colombia to Argentina, discontinuously (in much of the Amazon, it is not reported); it has been described in some Caribbean islands, such as Aruba, and is not found in Ecuador or Chile. Eleven subspecies have been described: C. d. durissus, C. d. cascavella, C. d. collilineatus, C. d. cumanensis, C. d. marajoensis, C. d. maricelae, C. d. ruruima, C. d. terrificus, C. d. trigonicus, C. d. unicolor, and C. d. vegrandis [6]. The only subspecies in Colombia is C. d. cumanensis, found in the Caribbean, Llanos Orientales, and Magdalena Medio regions [7]. Table 1 shows the geographical locations of some of these subspecies.
The C. durisuss snake has two large internasal scales, four to six prefrontal scales, two to five intersupraocular scales, one to eight (usually one or two) loreal scales on each side, 11 to 18 (usually 13 to 16) supralabial scales, and between 25 and 33 dorsal scales in the medial part of the body. There are 155 to 179 scales in the ventral region in males and 163 to 190 in females, and 25 to 32 in the subcaudal region in males and 18 to 26 in females, showing sexually dimorphism [4]. They have articulated anterior fangs, which measure approximately 1 cm (Figure 1A) [17].
It has a length of approximately 100 cm but can reach up to 180 cm. Its body is bulky in the center and thinner toward the ends (Figure 1B), and at the end of the tail, it has a rattle (Figure 1C) [18]. It is very variable in the color patterns of its scales, with a mixture of gray, brown, pale red, and even almost black scales. They present with between 18 and 32 rhomboid or diamond-shaped blotches, which are very conspicuous and of high contrast in juvenile individuals (Figure 1D,E). On the head, they have two dark lines that begin in the supraocular scales and extend toward the anterior part of the trunk, with a small line that branches toward the supralabial region (Figure 1F) [4].
It is a snake of terrestrial habits. Its natural habitat is dry, sandy, or rocky areas, scattered forests, and thickets, located in ecosystems of valleys and mountain bases, generally at latitudes below 1000 m above sea level [19]. It is not very aggressive and spends most of the day resting, with more activity at night. The South American rattlesnake is active throughout the year, even during cooler and drier seasons, conditions that determine the motivation for the colonization of various geographical areas [20]. It feeds mainly on rodents and birds [21].
The origin of the snakes of the genus Crotalus is not yet well defined [22,23,24,25,26]. The oldest fossils of snakes of the genus Crotalus are from the middle Miocene (10–8 million years), but it is suggested that the true origins may be much earlier [27]. Based on the study of mitochondrial genes of C. durissus, a consistent phylogeographic pattern is proposed with a gradual dispersal along the Central American isthmus, followed by a more rapid dispersal through South America toward the Middle Pleistocene, approximately 1.1 million years ago [28].

3. Epidemiology of C. durissus Envenomation

Snake envenomation is the result of snakebite and venom injection, usually in accidental circumstances [29]. Approximately 5.4 million snakebites to humans occur each year, of which between 1.8 and 2.7 million cases result in envenomation and approximately 100,000 in deaths [30]. Many survivors suffer from amputations and other types of permanent disabilities. In America, approximately 100,000 snakebites and approximately 2300 deaths are reported annually [31]. In Brazil, venomous snakes are widely distributed in its territory, and occurrences show higher lethality in areas with limited access to medical care. Between 2000 and 2017, there were 471,801 cases of snake envenomation, and 1892 deaths were reported. The highest incidence occurred in the north, where 142,230 cases and 647 deaths were reported [32].
Based on Brazilian epidemiological data (Sistema de Informações de Agravos de Notificação- SINAN, 2018), in the last decade, the number of cases ranged between 26,000 and 30,000 per year, and envenomation caused by the genus Crotalus varied between 1700 and 2400 registered cases per year [33]. In another study carried out between 2010 and 2015 in the Brazilian Amazon, where 24 million people live, there were 70,816 snakebites, and 3058 (4.3%) cases were classified as caused by Crotalus, with an average incidence rate of 11.1/100,000 inhabitants/year [34].
In Colombia, between 3000 and 5000 cases of snake envenomation are recorded per year, with a mortality of approximately 300 people. Envenomation is caused in 99% of cases by snakes derived from the Bothrops, Bothriechis, Bothrocophias, Porthidium, Lachesis and Micrurus genera [35]. Crotalus envenomation is very rare, accounting for less than 1% of snake envenomation [36].

4. C. durissus Venom

In South America, snake venoms belonging to the C. durissus complex have components such as phospholipase A2 (PLA2) (including Crotoxin-CTX), snake venom serine protease (SVSP) (including collinein-1 and gyroxin), snake venom C-type lectin-like (SVCTL) (including convulxin), snake venom metalloprotease (SVMP), crotamine, snake venom L-amino acid oxidase (SVLAAO), bradykinin-enhancing peptide (BPP), crotalphine, crotalisidin, natriuretic peptide isolated from C. d. cascavella (NPCdc), hyaluronidase, phosphodiesterase from C. d. collilineatus (CdcPDE), nucleotidases, and snake venom vascular endothelial growth factor VEGF (SVVEGF) [37,38,39,40,41,42,43,44], responsible for the biological effects and aspects related to envenomation. The relative concentrations and interactions between venom components such as ubiquity, bioactivity, and number of associations and synergies is a very important area to be explored in C. durissus venom [45].
Intragenus and intraspecific variation in venom in pit vipers has been correlated to diet or topographic features. One of the primary reasons for the high diversity and plasticity in snake venom is frequent duplication of toxin-encoding genes and recruitment strategies [45]. Variability has been documented in the percentages of the different components of the venom, based mainly on proteomic studies (see Table 1). This may be the cause of variations in the effect of envenomation and response to antivenom [46,47,48]. In the case of C. durissus, there are differences mainly in PLA2 and crotamine [49,50,51,52,53,54,55,56,57,58,59,60,61].

4.1. PLA2—CTX

CTX is the main component of the venom of C. durissus [62]. It is characterized by being a protein complex composed of two noncovalent subunits, the basic PLA2 subunit (CB) and the acid subunit, crotapotin or PLA2 Asp49 (CA) [63,64]. The two subunits act in synergy. CA is a chaperone that assists the binding of CB to binding sites on nerve endings and skeletal muscle [65,66]. The action on the nerve endings is of the beta-neurotoxin type, preventing the release of acetylcholine from the neuronal component of the neuromuscular plate, which causes its paralytic action [67,68,69,70]. This mechanism of action has been proposed as the basis for the development of muscle relaxants [71], with a possible action and response similar to that of botulinum toxin type A [72].
A postsynaptic effect at the level of the acetylcholine receptor in the muscular component of the neuromuscular junction has also been postulated, with an action similar to that of α-neurotoxins, an effect that would contribute to the paralysis of its prey [73].
In the venom of each individual C. durissus, there is a mixture of isoforms of CA (CA1, CA2, CA3, CA4) and CB (CBa, CBb, CBc, CBd) [74,75], which may have different biological properties [76]. Based on these differences, two classes of CTX (classes I and II) are distinguished. Class I, composed of CBb, CBc, and CBd with any of the CA isoforms, forms very stable complexes (half-life 10–20 min, Kd = 4.5 nM) with high toxicity and low PLA2 activity. Class II, composed of CBa2 with any of the CA isoforms, contains fewer stable complexes (half-life of approximately 1 min, Kd = 25 nM) with high enzymatic activity [77]. The three-dimensional structure of the molecule and its subunits has been extensively studied [78,79].
CTX-related myotoxicity is characterized by sarcolemma degradation by phospholipid hydrolysis [80,81]. The release of mitochondrial “alarmins” secondary to myonecrosis could contribute to the local and systemic inflammatory events observed in C. durissus envenomation [82]. Altered intracytoplasmic calcium dynamics are also implicated in muscle damage [83].
A possible direct neuronotoxic effect of CTX, which can lower the seizure threshold, has been studied [84]. CTX induces calcium-dependent glutamate release through the N and P/Q calcium channels, which suggests a role in this effect [85]. The activation of alpha-adrenergic receptors and 5-hydroxytryptamine (5-HT) has been shown, which can cause an antinociceptive effect, with potential research importance as an analgesic [86].
CTX has an anticoagulant effect by decreasing the levels of von Willebrand factor (vWF) and tissue plasminogen activator (t-PA) and raising the levels of protein C and plasminogen activator inhibitor type 1 (PAI-1), an effect that has been studied as a potential tool for the development of antithrombotic drugs [87].
In the search for biomedical applications, there are different lines of research aimed at evaluating the effect of CTX on the immune system (aiming at possible development of anti-inflammatory and immunosuppressive drugs) [88], as well as its possible anti-infection and anti-neoplastic action.
Inhibitory actions of CTX on dendritic cells [89,90], neutrophils [91,92], monocytes/macrophages [93,94], and T and B lymphocytes [95,96] have been studied. In macrophages, the effect of CTX on phagocytic propagation and activity has been characterized, and toxin-mediated alterations in cytoskeletal proteins modulate phagocytosis independent of the receptor involved [97]. The CB fraction of CTX can decrease the expression of MHC type II molecules, which are important for antigen presentation to T-lymphocytes, as well as costimulatory molecules such as CD40, CD80, and CD86 [92]. It has been shown to inhibit antibody production [98], a concern in the manufacture of antivenoms [99,100]. An inhibitory effect on proinflammatory prostaglandins has also been reported [101,102,103,104]. In an experimental model of sepsis, CTX improved the survival of mice from 40% to 80%, modulating the secretion of proinflammatory cytokines such as IL-6 and TNF-α while increasing IL-10, a known inhibitor of the immune response [105]. In models of autoimmune encephalomyelitis, it had an anti-inflammatory and immunosuppressive effect [106,107], as well as in a model of inflammatory bowel disease [108].
CTX as an anti-infection agent has been studied as an antiviral, with action on hepatitis C [109], dengue [110], yellow fever [111], and chikungunya [112] viruses; as an antibacterial [113]; as an antifungal [114]; and as an antiplasmodium [115].
CTX as an antineoplastic agent has been studied in various neoplastic cell lines, such as those of the thymus [116], lung [117,118], breast [119], pancreas, esophagus, glial cells, and cervix [120].
CTX increases the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel current and corrects ∆F508CFTR dysfunction, which could have an impact on cystic fibrosis [121].

4.2. SVSP—Collineína-1, Gyroxin

SVSPs, present in many viper venoms, have a thombin-like effect [122], generating fibrin from fibrinogen. In C. d. collilineatus, one of these proteins has been isolated, collinein-1, which has been extensively studied from the molecular point of view, as well as in terms of its biological effects [123]. A similar enzyme has been isolated from C. d. terrificus [124]. Due to its action of generating fibrin, it has been studied in wound healing [125,126], tendon plasty [127], cartilage repair [128], motor neurons [129], and scaffolding for mesenchymal cells [130]. It is proposed that pegylation of these SVSPs can enhance their therapeutic efficiency [131].
An inhibitory effect of collinein-1 on the cancer-relevant voltage-gated potassium channel (hEAG1) has been reported [132].
Gyroxin is another SVSP found in the venom of C. d. terrificus and causes “gyroxin syndrome” in mice, characterized by aberrant motor events, known as barrel rotation [133]. It possibly induces neurotoxicity by increasing glutamate levels [134] and by altering blood-brain barrier permeability [135]. Similar to other SVSPs, gyroxin promotes fibrinogen fractionation into fibrin monomers, resulting in thrombus formation [136].
Gyroxin has a proinflammatory effect that is involved in the degradation of protease activated receptors PAR1 and PAR2, which activate phospholipase C (PLC) and protein kinase C (PKC) [137]. The edema-inducing effect of gyroxins is under investigation; however, effects on prostaglandins have been implicated [138].

4.3. SVCTL—Convulxin

Convulxin has been isolated from the venom of C. d. terrificus. It is an octamer with disulfide bonds composed of four alpha subunits and four homologous beta subunits, having similarities with CTLs, factor IX-binding protein (IX-bp) and flavocetin-A (Fl-A) [135]. Convulxin differs from these proteins in that it lacks the consensus sequence for carbohydrate and Ca2+ binding [139,140]. It produces the activation of platelet aggregation through an agonist effect on the receptor for glycoprotein VI (GPVI), which occurs in exposed collagen when there is endothelial damage [141]. It causes a form of neurotoxicity with balance disturbances and seizures, best observed in mice [142].
Little is known about the effect of convulxin on immune cells. A study demonstrated its role in inflammasome activation and increased IL-1 release [143].
Convulxin corresponds to 0.04% of the protein components of C. d. terrificus venom [13].

4.4. SVMP

SVMPs constitute a large family of biologically active proteins isolated from the venom of various species of the Viperidae family [144]. SVMPs comprise zinc-dependent enzymes of the reprolysin family. The members of this group of metalloproteases are classified into four main classes (I, II, III and IV) according to the presence of different domains: class I (20–30 kDa) includes enzymes that have only one metalloproteinase domain; class II (30–60 kDa) includes proteins with a metalloproteinase domain and a disintegrin-like domain (not enzyme); class III (60–100 kDa) includes the two domains of class II plus a cysteine-rich domain; and class IV includes proteins with all the aforementioned domains linked to a C-type lectin subunit by disulfide bonds [145]. SVMPs induce bleeding disorders, tissue necrosis including skin necrosis [146], myotoxic effects, inflammatory reactions, and endothelial cell injury [147,148]. In the venoms of the subspecies of C. durissus, the presence of the four classes of SVMPs has been reported [12].
SVMPs with a disintegrin domain (SVMP class II) can release this domain, which has mainly RGD (arginine-glycine-aspartic acid) motifs and less common “non-RGD” motifs, such as lysine-tryptophan-serine (KTS), arginine-tryptophan-serine (RTS), and methionine-leucine-aspartic acid (MLD) motifs, among others, with the ability to bind to integrins [149,150,151]. Disintegrins separate cells from the extracellular matrix; in the case of the skin, this is expressed clinically as blisters, as seen in Bothrops snake envenomation [152]. It has been postulated that this biological mechanism may be useful for the development of antimetastatic drugs [153].

4.5. Crotamine

Crotamine is a small basic protein with a size of 4.8 kDa and an isoelectric point of approximately 10.8 [154,155,156]. It is composed of a single chain of 42 amino acid residues and contains three disulfide bonds [157,158]. The general folding of crotamine is homologous to antimicrobial peptides belonging to the families of alpha-defensins, beta-defensins, and insect defensins [159,160]. This toxin is myotoxic [161], with a paralyzing effect on prey [162,163]. It is a cause of myotoxicity during envenomation in humans. It acts on sodium and potassium channels [164,165] and generates mitochondrial dysfunction [166]. It was first observed in the venom of Argentine rattlesnakes by Gonçalves and Polson and was later found in other venomous rattlesnakes from southern Brazil [167].
Crotamine has a good capacity for cell penetration [168,169], given both its small size and its positive net surface charge [170], which makes it attractive in the study of biotechnological applications. Several biological functions of this polypeptide have been described, including antiviral (SARS-CoV-2) [171], antibacterial [172], antifungal [173,174], antileishmanial [175,176,177], anthelmintic [178,179], antimalarial [180] and antitumor [181,182,183] activities.
Mice injected intradermally with crotamine exhibited acute local and systemic inflammatory responses similar to histamine, limiting the therapeutic use of crotamine in its original form [184]. It stimulates the phagocytic and cytostatic activity of macrophages by inducing NO and TNF-α through the p38 and NF-κB signaling pathways [185]. It may additionally have antinociceptive [185], activation of platelet aggregation [186] and anti-inflammatory [187] effects.

4.6. SVLAAO

SVLAAO is a dimeric enzyme that deaminates an L-amino acid to an α-keto acid with concomitant production of hydrogen peroxide and ammonia [188]. These enzymes are widely distributed in the venom of snakes, including Crotalus [189], and induce various biological effects, including apoptosis [190], edema [191], increased platelet aggregation [192,193], and bleeding disorders by factor IX inhibition [194], among others. It can have antiviral [195], antibacterial, and antifungal [196] effects. In the specific case of C. d. cascavella [197], proinflammatory, antibacterial, and antileishmanial effects of SVLAAO have been found. Bordonein-L from C. d. terrificus exhibits cytotoxicity against the fibroblast cell line and kills Leishmania amazonensis promastigotes [198]. SVLAAO from the venom of C. d. cumanensis has been found to have an antibacterial effect [199]. Other effects have been studied, such as the antineoplastic effects of SVLAAO from the venom of C. d. terrificus in glioma and pancreatic carcinoma cell lines [200].

4.7. BPP

Some snakes produce BPP in their venom, which increase the hypotensive effect induced by bradykinin [201] and decrease the vasopressor effect of angiotensin I by inhibiting angiotensin-converting enzyme (ACE) as reported by Kelvin K-C Ng and John Robert Vane in 1967 [202]. This substance was studied in the snake B. jararaca from Brazil. JR Vane motivated two of his students, David Cushman and Miguel Ondetti, to develop an ACE-inhibiting drug, and thus captopril was synthesized [202]. JR Vane was awarded the Nobel Prize in Physiology or Medicine in 1982 for his study of prostaglandins and the mechanisms of action of aspirin [203]. From the venom of C. d. cascavella, a form of BPP was isolated with a higher potency than that of B. jararaca [204].

4.8. Crotaline

Giorgi et al. (1993) [205] demonstrated that factors with molecular masses below 3 kDa present in the venom of C. d. terrificus cause antinociceptive effects in mice that are likely mediated by opioid receptors. Subsequently, crotalphine, a 14-amino acid peptide containing a disulfide bridge and pyroglutamic acid, was isolated [206]. It exerts a potent and long-lasting antinociceptive effect that is mediated by the activation of peripheral opioid receptors [207,208]. Crotalphine is not a direct opioid receptor agonist; however, it induces the release of dynorphin A, which activates kappa opioid receptors [209]. Opioid receptor activation regulates a variety of intracellular signals, including the mitogen-activated protein kinase (MAPK) pathway. In primary cultures of sensory neurons, crotalphin increased the levels of activated ERK1/2 and JNK-MAPK, and this increase depended on the activation of protein kinase Cζ (PKCζ). In vivo pharmacological inhibition of spinal ERK1/2 and JNK, but not p38, blocks the antinociceptive effect of crotalphin [210]. The peripheral L-arginine-nitric oxide-cyclic GMP pathway and ATP-sensitive K⁺ channels are involved in the antinociceptive effect of crotalphin on neuropathic pain in rats [211].
Crotalphine has also been reported to desensitize transient receptor potential ankyrin 1 (TRPA1) ion channels [212], a receptor that has a relevant role in the maintenance of inflammatory hyperalgesia [213]. Crotalphin attenuates pain and neuroinflammation in experimental autoimmune encephalomyelitis in mice [214].

4.9. Crotalicidin

Cathelicidins are antimicrobial peptides produced by humans and animals in response to various pathogenic microbes. Crotalicidin, a peptide related to cathelicidin from the venom of the rattlesnake C. d. terrificus, has shown antibacterial [215], antiparasitic [216], and antifungal [217,218] activity, similar to that of the human cathelicidin LL-37. Crotalicidin has also been studied for its antiproliferative properties [219,220]. It is proinflammatory [221].

4.10. NPCdc

NPCdc isolated from C. d. cascavella reduces the tubular transport of sodium, which causes an increase in its excretion and generates a diuretic action. Additionally, through a mechanism possibly mediated by nitrites, it has a vasodilator effect [222]. An antioxidant effect has been postulated [223].

4.11. Hyaluronidase

Hyaluronidases are a common component of snake venoms and are known as “spread factors” because they cleave hyaluronate, a nonproteoglycan polysaccharide found in the extracellular matrix, facilitating the diffusion of toxins into tissues and blood circulation of prey/victims [224,225]. Although they are not toxins, they indirectly enhance the toxicity of the venom [226], contributing to local and systemic damage. A hyaluronidase has been isolated from C. d. territicus, with anti-edema properties [227].

4.12. CdcPDE

CdcPDE has been isolated and characterized from the venom of the snake C. d. collilineatus and has been shown to have an inhibitory effect on platelet aggregation and cytotoxic action on human keratinocytes [228].

4.13. Nucleotidases

In the venom of C. d. terrificus, small membranous vesicles contain various bioactive molecules, among which ecto-5’-nucleotidase has been isolated. Ecto-5’-nucleotidase is a cell membrane protein that releases adenosine and generates vasodilation, paralysis, and anticoagulation [229].

4.14. SVVEGF

SVVEGF contributes to the action of venom components by increasing vascular permeability. It has been isolated from C. d. collilineatus (CdcVEGF) [230].

5. PLA2 Inhibitors (in Blood-Not in Venom)

Despite the deleterious action of the venom components of C. durissus, snakes of this species are naturally resistant to them due to the presence of specific antitoxins in their circulating blood [231]. Antitoxins are proteins secreted by the liver of the snake capable of preventing damage caused by toxins that may eventually reach the bloodstream, the most important being those that inhibit PLA2 (PLI) [232,233].
PLIs are oligomeric glycoproteins, with a molecular mass between 75 and 180 kDa, classified into three structural classes (αPLI, βPLI, γPLI). αPLIs have a C-type lectin-like domain and preferentially neutralize the acid PLA2. βPLIs are distinguished by the presence of leucine-rich repeats and are capable of inhibiting basic PLA2 [234]. γPLIs are composed of a conserved half-cysteine tandem repeat known as three-finger motifs [235]. The first endogenous PLI isolated from C. d. terrificus was a γPLI [236]. The molecular structure and possible interaction mechanisms between CNF and CTX have been investigated using biochemical and biophysical approaches [237]. CNF has been shown to inhibit the toxic effects of CTX in mouse neuromuscular preparations [238].
PLI has been shown to modulate human peripheral blood mononuclear cells and neutrophils, generating an anti-inflammatory action [239].
The manufacture of a recombinant PLI from C. d. collilineatus (recγCdcPLI) is highly efficient and therefore allows for improved drug design for the treatment of diseases caused by PLA2 activity [240]. An in vitro antitumor effect has been reported [241].
PLI in C. d. terrificus corresponds to 0.46% of the total venom proteins [13].

6. Human Envenomation by C. durissus

At Fundación Valle del Lili, a high-complexity university hospital located in Cali, in southwestern Colombia, during the last two decades (2001–2022), we have treated 104 patients bitten by snakes of the Viperidae family, with 84 of the cases leading to envenomation. Only two patients were bitten by C. d. cumanensis, one with dry bite (without envenomation), a condition that has already been reported in this type of bite [242], and one with envenomation. This case was treated in June 2004. A 35-year-old man had a pet C. d. cuminensis snake, which was large (a situation that may be related to the development of greater myotoxicity [243]). The animal was from the Colombian Caribbean region. He was bitten on the second finger of his left hand after improper handling of the animal. He reported mild pain and progressive development of edema that spread to the forearm (Figure 2). Four hours after the bite, he began to present blurred vision, slight weakness in the muscles of the face and the four extremities associated with generalized myalgia. He was hospitalized and found to have hypotension (blood pressure: 90/70 mmHg, pulse: 102 ppm). Physical examination revealed edema of the left upper limb, a small punctiform wound on the second finger of the left hand with no signs of bleeding, slight bilateral palpebral ptosis and decreased generalized muscle strength without respiratory distress. Laboratory tests showed mild anemia, neutrophilia, prolonged coagulation tests, slight consumption of fibrinogen, and severe increase in creatine phosphokinase (CPK) (Hb: 10.2 g/L, white blood cell count: 12,054/mm3, neutrophils: 9250/mm3, lymphocytes: 1954/mm3, monocytes: 552/mm3, platelets: 112.00/mm3, prothrombin time: 16 s, partial thromboplastin time: 54 s, fibrinogen: 154 mg/dL, CPK: 1174.5 mcg/L). Treatment was started in the intensive care unit (ICU), where he received 12 vials of polyvalent antivenom serum for snakes of the Viperidae family, manufactured at the Instituto Nacional de Salud, Colombia [244]. Twenty-four hours after admission, he presented with an increase in blood urea nitrogen (BUN) and creatinine (BUN: 62 mg/dL and creatinine: 3.2 mg/dL), and he became oliguric with dark urine, consistent with myoglobinuria. Acute renal failure was diagnosed, for which he was treated with several dialysis sessions. The patient gradually recovered clinically and paraclinically. The patient was discharged with no apparent sequelae.
The clinical manifestations observed in envenomation by snakes of the C. durissus species are the result of local tissue damage (edema) [245], neurotoxic activities (neuromuscular blockade) [246], myotoxicity, hematotoxicity (hemolysis) [247], nephrotoxicity, and coagulopathy [248], as seen in our patient. Early consultation is important for timely treatment, given that the manifestations can evolve into life-threatening conditions or leave serious sequelae, such as the progression of local damage or development of a compartment syndrome [249]; the evolution of neurotoxicity leading to difficulty swallowing, velopalatine paralysis, increased vomiting reflex, changes in taste and smell, and finally respiratory arrest; and myotoxic effects that lead to the devastation of the muscles and further worsening renal compromise that can lead to irreversible damage [250,251,252,253]. Coagulopathic effects can lead to afibrinogenemia with blood incoagulability [254].
Kidney damage is the product of rhabdomyolysis [255,256], hypotension [257,258], and a direct toxic effect of the venom components on the kidney [259,260,261,262]. It most certainly contributes to the cardiotoxic effect [263,264,265,266,267], which can contribute to decreased cardiac output and worsened blood perfusion [268].
Toxicity has also been described at the neuronal [84,85], pulmonary [269,270], hepatic [271,272] and germ-cell [273] levels.
Based on clinical manifestations, C. durissus envenomation can be classified as mild, moderate, or severe. Mild envenomation is characterized by discrete neurotoxic signs and symptoms, without myalgias or with mild myalgias and without urine discoloration; moderate envenomation is characterized by the presence of discrete neurotoxic signs and symptoms, discrete myalgias and myoglobinuria; and severe envenomation is characterized by obvious and intense neurotoxic signs and symptoms (myasthenic facies, muscle weakness), intense and generalized myalgia, dark urine, and oliguria or anuria [274].

7. Antivenoms Used in C. durissus Envenomation

7.1. Equine Antivenoms

The only treatment available for snakebite envenomation is antivenom, which is a hyperimmune immunoglobulin obtained from animals immunized with specific venom [275], a technique that has remained relevant since its description by Albert Calmette in 1896 [276]. At present, mixtures of venoms of different species and/or subspecies are made from different geographical areas (taking into account interspecies variations) belonging to the same genus or family [277]. The antigens are usually inoculated into horses (immunization process), followed by a screening test (approximately 15 to 30 days later) to investigate the titer of specific antibodies. If the expected antibody titers are achieved, blood is obtained from the animal, the plasma is separated, and the IgG immunoglobulins are purified, which can be prepared in three main conformations: monovalent Fab, F(ab’)2 fragments, or complete IgG [278,279,280,281]. The neutralizing capacity of antivenoms can be determined by different techniques known as “antivenomics” [282]. There are studies of the ability of antivenoms to neutralize C. durissus venoms [283], including interspecies [284] and intersubspecies [285].
In Colombia, one of the commercial antivenoms available is that produced by INS, which is a polyvalent heterologous serum made by inoculating horses with the venom of Crotalus, Lachesis, and Bothrops species. A 10 mL vial has the capacity to neutralize 10 mg of C. durissus venom [244]. Another antivenom available in Colombia is manufactured in Mexico by the Bioclón Institute. It is a polyvalent antiviperid (Antivipmyn-Tri®) digested with pepsin (fabotherapeutic type F(ab’)2) from horse plasma; 10 mL of Antivipmyn-Tri® neutralizes 15 mg of Crotalus sp. Venom [286,287]. In one case with respiratory paralysis, it was very effective [288].
Given the political conflicts in Colombia, there is difficulty in accessing biological samples in several regions. A strategy of making biobanks of venoms and mRNA of the most relevant proteins from C. d. cumanensis, such as SVMP, disintegrins, disintegrin-like, PLA2, SVTCL, and SVSP, with a view to obtaining future products with an antivenom effect, has been proposed [289].
Apart from antivenom, which is the cornerstone of treatment, support measures are also fundamental for the control of cardiovascular, pulmonary, renal, and neurological effects, among others; ideally, the patient should be managed in the ICU [290].
The PLA2 inhibitor varespladib is highly effective in abrogating the neuromuscular blocking activity of C. durissus venoms [291,292] and appears to act synergistically with antivenom [293]. Clinical trials are not yet available.
Radicicol, a heat-shock protein (HSP) inducer, enhances muscle regeneration by attenuating NF-kB activation and increasing myogenic differentiation. It could be useful in the regeneration of skeletal muscle injured by CTX [294,295].

7.2. Nanobodies

Camelids produce immunoglobulin G devoid of light chains, whose recognition domain is a single-domain antibody (VHH). VHH has been obtained against CTX of C. d. terrificus with good neutralizing capacity and is a promising future alternative for the treatment of this type of envenomation [296,297].

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Linné, C. Systema Naturae per Regna Tria Naturae: Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis; Emanuel. Beer; Impensis Georg: Leipzig, Germany, 1789; pp. 1080–1082. [Google Scholar] [CrossRef] [Green Version]
  2. Vosmaer, A. Description D’un Serpent À Sonnette De L’amerique; chez Pierre Meyer: Amsterdam, The Netherlands, 1767. [Google Scholar]
  3. Vanzolini, P.E.; Calleffo, M.E. A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae). An. Acad. Bras. Cienc. 2002, 74, 37–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Campbell, J.A.; Lamar, W. The Venomous Reptiles of the Western Hemisphere Coral snakes and sea snakes: Rattlesnake, Genus Crotalus Linnaeus, 1758; Cornell University Press: Ithaca, NY, USA, 2004; Volume 2, pp. 490–616. [Google Scholar]
  5. Hoyos, M.A.; Almeida-Santos, S.M. The South-American rattlesnake Crotalus durissus: Feeding ecology in the central region of Brazil. Biota Neotrop. 2016, 16, e20140027. [Google Scholar] [CrossRef] [Green Version]
  6. Wüster, W.; Ferguson, J.E.; Quijada-Mascareñas, J.A.; Pook, C.E.; Salomão, M.D.G.; Thorpe, R.S. Tracing an invasion: Landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol. Ecol. 2005, 14, 1095–1108. [Google Scholar] [CrossRef]
  7. Lynch, J.; Angarita-Sierra, T.; Ruiz-Gómez, F. Programa Nacional para la Conservación de las Serpientes Presentes en Colombia; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia; Universidad Nacional de Colombia, Instituto Nacional de Salud: Bogotá, Colombia, 2014; ISBN 978-958-8901-18-3. [Google Scholar]
  8. Rodríguez-Vargas, A.; Vega, N.; Reyes-Montaño, E.; Corzo, G.; Neri-Castro, E.; Clement, H.; Ruiz-Gómez, F. Intraspecific Differences in the Venom of Crotalus durissus cumanensis from Colombia. Toxins 2022, 14, 532. [Google Scholar] [CrossRef] [PubMed]
  9. Céspedes, N.; Castro, F.; Jiménez, E.; Montealegre, L.; Castellanos, A.; Cañas, C.; Arévalo-Herrera, M.; Herrera, S. Biochemical comparison of venoms from young Colombian Crotalus durissus cumanensis and their parents. J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 268–284. [Google Scholar] [CrossRef]
  10. Baudou, F.G.; Rodriguez, J.P.; Fusco, L.; de Roodt, A.R.; De Marzi, M.C.; Leiva, L. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review. Acta Trop. 2021, 224, 106119. [Google Scholar] [CrossRef]
  11. Calvete, J.J.; Sanz, L.; Cid, P.; de la Torre, P.; Flores-Díaz, M.; Dos Santos, M.C.; Borges, A.; Bremo, A.; Angulo, Y.; Lomonte, B.; et al. Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along Crotalus Dispersal in South America. J. Proteome Res. 2010, 9, 528–544. [Google Scholar] [CrossRef]
  12. Boldrini-França, J.; Corrêa-Netto, C.; Silva, M.M.; Rodrigues, R.S.; De La Torre, P.; Pérez, A.; Soares, A.M.; Zingali, R.B.; Nogueira, R.A.; Rodrigues, V.M.; et al. Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. J. Proteom. 2010, 73, 1758–1776. [Google Scholar] [CrossRef]
  13. Wiezel, G.A.; Shibao, P.Y.T.; Cologna, C.T.; Filho, R.M.; Ueira-Vieira, C.; De Pauw, E.; Quinton, L.; Arantes, E.C. In-Depth Venome of the Brazilian Rattlesnake Crotalus durissus terrificus: An Integrative Approach Combining Its Venom Gland Transcriptome and Venom Proteome. J. Proteome Res. 2018, 17, 3941–3958. [Google Scholar] [CrossRef]
  14. Melani, R.D.; Araujo, G.D.; Carvalho, P.C.; Goto, L.; Nogueira, F.C.; Junqueira, M.; Domont, G.B. Seeing beyond the tip of the iceberg: A deep analysis of the venome of the Brazilian Rattlesnake, Crotalus durissus terrificus. EuPA Open Proteom. 2015, 8, 144–156. [Google Scholar] [CrossRef] [Green Version]
  15. Tasima, L.J.; Hatakeyama, D.M.; Serino-Silva, C.; Rodrigues, C.F.; de Lima, E.O.; Sant’Anna, S.S.; Grego, K.F.; de Morais-Zani, K.; Sanz, L.; Calvete, J.J.; et al. Comparative proteomic profiling and functional characterization of venom pooled from captive Crotalus durissus terrificus specimens and the Brazilian crotalic reference venom. Toxicon 2020, 185, 26–35. [Google Scholar] [CrossRef] [PubMed]
  16. Acosta-Peña, A.; Núñez, V.; Pereañez, J.A.; Rey-Suárez, P. Immunorecognition and Neutralization of Crotalus durissus cumanensis Venom by a Commercial Antivenom Produced in Colombia. Toxins 2022, 14, 235. [Google Scholar] [CrossRef] [PubMed]
  17. McCranie, J.R. Crotalus durissus. Catalogue of American Amphibians and Reptiles (CAAR). 1993. Available online: https://repositories.lib.utexas.edu/handle/2152/45436 (accessed on 5 December 2022).
  18. Ángel-Mejía, S.R. Serpientes: Mitos y Realidades; Universidad CES: Medellín, Colombia, 2017; pp. 106–107. [Google Scholar]
  19. Benício, R.A. Notes on habitat use of Crotalus durissus (South American Rattlesnake). Herpetol. Notes 2018, 11, 645–646. [Google Scholar]
  20. Tozetti, A.M.; Martins, M. Daily and seasonal activity patterns of free range South-American rattlesnake (Crotalus durissus). An Acad. Bras. Cienc. 2013, 85, 1047–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  21. Martinez, M.G.; Ducatti, C.; Silva, E.T.; Sant’Anna, S.S.; Sartori, M.M.P.; Barraviera, B. Does the rattle of Crotalus durissus terrificus reveal its dietary history? J. Venom. Anim. Toxins Incl. Trop. Dis. 2014, 20, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Hoffstetter, R. Un serpent terrestre dans le Cretace inferieur du Sahara. Bull. Société Géologique Fr. 1959, S7-I, 897–902. [Google Scholar] [CrossRef]
  23. Szyndlar, Z.; Rage, J.C. Fossil record of the true vipers. In Biology of the Vipers; Schuett, G.W., Höggren, M., Douglas, M.E., Greene, H.W., Eds.; Eagle Mountain Publishing: Eagle Mountain, UT, USA, 2002; pp. 419–444. [Google Scholar]
  24. Van Devender, T.R.; Conant, R. Pleistocene forests and copperheads in the eastern United States, and the historical biogeography of New World Agkistrodon. In Snakes of the Agkistrodon Complex: A Monographic Review; Gloyd, H.K., Conant, R., Eds.; Contributions to Herpetology Number 6; Society for the Study of Amphibians and Reptiles: Oxford, OH, USA, 1990; pp. 601–614. [Google Scholar]
  25. Gutberlet, R.L., Jr.; Harvey, M.B. The evolution of New World venomous snakes. In Venomous Reptiles of the Western Hemisphere, 2 Volumes; Campbell, J.A., Lamar, W.W., Eds.; Cornell University Press: Ithaca, NY, USA, 2004; pp. 634–682. [Google Scholar]
  26. Douglas, M.E.; Douglas, M.R.; Schuett, G.W.; Porras, L.W. Evolution of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change. Mol. Ecol. 2006, 15, 3353–3374. [Google Scholar] [CrossRef]
  27. Holman, J.A. Fossil Snakes of North America: Origin, Evolution, Distribution, Paleocology; Indiana University Press: Bloomington, IN, USA, 2000. [Google Scholar]
  28. Gosling, W.D.; Bush, M.B. A biogeographic comment on: Wuster et al. (2005) Tracing an invasion: Landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol. Ecol. 2005, 14, 3615–3617. [Google Scholar] [CrossRef]
  29. Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Primers 2017, 3, 17079. [Google Scholar] [CrossRef]
  30. WHO. Snakebite Envenoming; WHO: Geneva, Switzerland, 2019. [Google Scholar]
  31. Kasturiratne, A.; Wickremasinghe, A.R.; De Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; De Silva, H.J. The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLoS Med. 2008, 5, e218. [Google Scholar] [CrossRef]
  32. Ministério da Saúde. Animais Peçonhentos-Serpentes; Situação Epidemiológica—Dados: Brasília, Brazil, 2019. [Google Scholar]
  33. Available online: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/animaisp/bases/animaisbrnet.def (accessed on 5 December 2022).
  34. Santos, H.L.R.; Sousa, J.D.D.B.; Alcântara, J.A.; Sachett, J.D.A.G.; Boas, T.S.V.; Saraiva, I.; Bernarde, P.S.; Magalhães, S.F.V.; de Melo, G.C.; Peixoto, H.M.; et al. Rattlesnakes bites in the Brazilian Amazon: Clinical epidemiology, spatial distribution and ecological determinants. Acta Trop. 2019, 191, 69–76. [Google Scholar] [CrossRef] [PubMed]
  35. Sevilla-Sánchez, M.J.; Ayerbe-González, S.; Bolaños-Bolaños, E. Snakebite biomedical and epidemiological aspects in the department of Cauca, Colombia, 2009–2018. Biomedica 2021, 41, 314–337. [Google Scholar] [CrossRef] [PubMed]
  36. INAS. Protocolo de Vigilancia de Accidente Ofídico, Ministerio de Salud de Colombia. 2022. Available online: https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro_Accidente%20Of%C3%ADdico.pdf (accessed on 5 December 2022).
  37. Aird, S.D.; Aggarwal, S.; Villar-Briones, A.; Tin, M.M.-Y.; Terada, K.; Mikheyev, A.S. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly. BMC Genom. 2015, 16, 1–20. [Google Scholar] [CrossRef] [Green Version]
  38. Dobson, J.; Yang, D.C.; Brouw, B.O.D.; Cochran, C.; Huynh, T.; Kurrupu, S.; Sánchez, E.E.; Massey, D.J.; Baumann, K.; Jackson, T.N.; et al. Rattling the border wall: Pathophysiological implications of functional and proteomic venom variation between Mexican and US subspecies of the desert rattlesnake Crotalus scutulatus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2018, 205, 62–69. [Google Scholar] [CrossRef] [Green Version]
  39. Georgieva, D.; Ohler, M.; Seifert, J.; von Bergen, M.; Arni, R.K.; Genov, N.; Betzel, C. Snake Venomic of Crotalus durissus terrificus—Correlation with Pharmacological Activities. J. Proteome Res. 2010, 9, 2302–2316. [Google Scholar] [CrossRef]
  40. Segura, Á.; Herrera, M.; Mares, F.R.; Jaime, C.; Sánchez, A.; Vargas, M.; Villalta, M.; Gómez, A.; Gutiérrez, J.M.; León, G. Proteomic, toxicological and immunogenic characterization of Mexican west-coast rattlesnake (Crotalus basiliscus) venom and its immunological relatedness with the venom of Central American rattlesnake (Crotalus simus). J. Proteom. 2017, 158, 62–72. [Google Scholar] [CrossRef] [PubMed]
  41. Cañas, C.A.; Castaño-Valencia, S.; Castro-Herrera, F.; Cañas, F.; Tobón, G.J. Biomedical applications of snake venom: From basic science to autoimmunity and rheumatology. J. Transl. Autoimmun. 2020, 4, 100076. [Google Scholar] [CrossRef] [PubMed]
  42. Faure, G.; Porowinska, D.; Saul, F. Crotoxin from Crotalus durissus terrificus and Crotoxin-Related Proteins: Structure and Function Relationship. In Toxins and Drug Discovery; Springer: Dordrecht, The Netherlands, 2017; pp. 3–20. [Google Scholar]
  43. Yoshida-Kanashiro, E.; Navarrete, L.F.; Rodríguez-Acosta, A. On the unsual hemorrhagic and necrotic activities caused by the rattlesnake (Crotalus durissus cumanensis) in a Venezuelan patient. Rev. Cuba. Med. Trop. 2005, 55, 38–40. [Google Scholar]
  44. Cañas, C.A.; Castro, F.; Castaño, R.S. Serpientes Venenosas: Lecciones Aprendidas Desde Colombia; Fundación Valle del Lili: Cali, Colombia, 2016; p. 93. [Google Scholar]
  45. Deshwal, A.; Phan, P.; Datta, J.; Kannan, R.; Thallapuranam, S. A Meta-Analysis of the Protein Components in Rattlesnake Venom. Toxins 2021, 13, 372. [Google Scholar] [CrossRef]
  46. Rangel-Santos, A.; Dos-Santos, E.; Lopes-Ferreira, M.; Lima, C.; Cardoso, D.; Mota, I. A comparative study of biological activities of crotoxin and CB fraction of venoms from Crotalus durissus terrificus, Crotalus durissus cascavella and Crotalus durissus collilineatus. Toxicon 2004, 43, 801–810. [Google Scholar] [CrossRef]
  47. de Oliveira, I.S.; Cardoso, I.A.; Bordon, K.D.C.F.; Carone, S.E.I.; Boldrini-França, J.; Pucca, M.B.; Zoccal, K.F.; Faccioli, L.H.; Sampaio, S.V.; Rosa, J.C.; et al. Global proteomic and functional analysis of Crotalus durissus collilineatus individual venom variation and its impact on envenoming. J. Proteom. 2019, 191, 153–165. [Google Scholar] [CrossRef] [PubMed]
  48. De Carvalho, L.H.; Teixeira, L.F.; Zaqueo, K.D.; Bastos, J.F.; Nery, N.M.; Setúbal, S.S.; Pontes, A.S.; Butzke, D.; Cavalcante, W.; Gallacci, M.; et al. Local and systemic effects caused by Crotalus durissus terrificus, Crotalus durissus collilineatus, and Crotalus durissus cascavella snake venoms in swiss mice. Rev. Soc. Bras. Med. Trop. 2019, 52, e20180526. [Google Scholar] [CrossRef] [PubMed]
  49. Francischetti, I.M.; Gombarovits, M.E.; Valenzuela, J.G.; Carlini, C.R.; A Guimarães, J. Intraspecific variation in the venoms of the South American rattlesnake (Crotalus durissus terrificus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2000, 127, 23–36. [Google Scholar] [CrossRef]
  50. Dos-Santos, M.C.; Assis, E.B.; Moreira, T.D.; Pinheiro, J.; Fortes-Dias, C.L. Individual venom variability in Crotalus durissus ruruima snakes, a subspecies of Crotalus durissus from the Amazonian region. Toxicon 2005, 46, 958–961. [Google Scholar] [CrossRef] [PubMed]
  51. Ponce-Soto, L.A.; Baldasso, P.A.; Romero-Vargas, F.F.; Winck, F.V.; Novello, J.C.; Marangoni, S. Biochemical, Pharmacological and Structural Characterization of Two PLA2 Isoforms Cdr-12 and Cdr-13 from Crotalus durissus ruruima Snake Venom. Protein J. 2007, 26, 39–49. [Google Scholar] [CrossRef]
  52. Ponce-Soto, L.A.; Lomonte, B.; Rodrigues-Simioni, L.; Novello, J.C.; Marangoni, S. Biological and Structural Characterization of Crotoxin and New Isoform of Crotoxin B PLA2 (F6a) from Crotalus durissus collilineatus Snake Venom. Protein J. 2007, 26, 221–230. [Google Scholar] [CrossRef] [PubMed]
  53. Oguiura, N.; Collares, M.A.; Furtado, M.F.D.; Ferrarezzi, H.; Suzuki, H. Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene 2009, 446, 35–40. [Google Scholar] [CrossRef] [PubMed]
  54. Romero-Vargas, F.F.; Ponce-Soto, L.A.; Martins-De-Souza, D.; Marangoni, S. Biological and biochemical characterization of two new PLA2 isoforms Cdc-9 and Cdc-10 from Crotalus durissus cumanensis snake venom. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 151, 66–74. [Google Scholar] [CrossRef]
  55. Pereañez, J.A.; Núñez, V.; Huancahuire-Vega, S.; Marangoni, S.; Ponce-Soto, L.A. Biochemical and biological characterization of a PLA2 from crotoxin complex of Crotalus durissus cumanensis. Toxicon 2009, 53, 534–542. [Google Scholar] [CrossRef]
  56. Quintana-Castillo, J.C.; Ávila-Gómez, I.C.; Ceballos-Ruiz, J.F.; Vargas-Muñoz, L.J.; Estrada-Gómez, S. Efecto citotóxico de fosfolipasas A2 del veneno de Crotalus durissus cumanensis de Colombia. Revista Investig. Salud Univ. Boyacá 2017, 4, 16–37. Available online: https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/194 (accessed on 22 October 2022).
  57. Patiño, A.C.; Pereañez, J.A.; Gutiérrez, J.M.; Rucavado, A. Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom. Toxicon 2013, 63, 32–43. [Google Scholar] [CrossRef]
  58. Salazar, A.M.; Aguilar, I.; Guerrero, B.; E Girón, M.; Lucena, S.; E Sánchez, E.; Rodríguez-Acosta, A. Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors. Blood Coagul. Fibrinolysis 2008, 19, 525–530. [Google Scholar] [CrossRef]
  59. Quintana-Castillo, J.C.; Vargas, L.J.; Segura, C.; Estrada-Gómez, S.; Bueno-Sánchez, J.C.; Alarcón, J.C. Characterization of the Venom of C. d. cumanesis of Colombia: Proteomic Analysis and Antivenomic Study. Toxins 2018, 10, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  60. Aguilar, I.; Guerrero, B.; Salazar, A.M.; Girón, M.E.; Pérez, J.C.; Sánchez, E.E.; Rodríguez-Acosta, A. Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis. Toxicon 2007, 50, 214–224. [Google Scholar] [CrossRef] [PubMed]
  61. Arévalo-Páez, M.; Rada-Vargas, E.; Betancur-Hurtado, C.; Renjifo, J.M.; Renjifo-Ibáñez, C. Neuromuscular effect of venoms from adults and juveniles of Crotalus durissus cumanensis (Humboldt, 1811) from Guajira, Colombia. Toxicon 2017, 139, 41–44. [Google Scholar] [CrossRef] [PubMed]
  62. Hawgood, B.J. Karl Heinrich Slotta (1895–1987) biochemist: Snakes, pregnancy and coffee. Toxicon 2001, 39, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
  63. Faure, G.; Choumet, V.; Bouchier, C.; Camoin, L.; Guillaume, J.-L.; Monegier, B.; Vuilhorgne, M.; Bon, C. The origin of the diversity of crotoxin isoforms in the venom of Crotalus durissus terrificus. Eur. J. Biochem. 1994, 223, 161–164. [Google Scholar] [CrossRef]
  64. Hendon, R.A.; Fraenkel-Conrat, H. Biological Roles of the Two Components of Crotoxin. Proc. Natl. Acad. Sci. USA 1971, 68, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
  65. Krizaj, I.; Faure, G.; Gubensek, F.; Bon, C. Neurotoxic phospholipases A2 ammodytoxin and crotoxin bind to distinct high-affinity protein acceptors in Torpedo marmorata electric organ. Biochemistry 1997, 36, 2779–2787. [Google Scholar] [CrossRef]
  66. Bon, C.; Changeux, J.-P.; Jeng, T.-W.; Fraenkel-Conrat, H. Postsynaptic Effects of Crotoxin and of Its Isolated Subunits. Eur. J. Biochem. 1979, 99, 471–482. [Google Scholar] [CrossRef]
  67. Hawgood, B.J.; Smith, I.H. The importance of phospholipase A2 in the early induction by crotoxin of biphasic changes in endplate potentials at the frog neuromuscular junction. Toxicon 1989, 27, 272–276. [Google Scholar] [CrossRef]
  68. Chang, C.C.; Lee, J.D. Crotoxin, the neurotoxin of South American rattlesnake venom, is a presynaptic toxin acting like beta-bungarotoxin. Naunyn Schmiedebergs Arch. Pharmacol. 1977, 296, 159–168. [Google Scholar] [CrossRef] [PubMed]
  69. Brazil, O.V.; Excell, B.J. Action of crotoxin and crotactin from the venom of Crotalus durissus terrificus (South American rattlesnake) on the frog neuromuscular junction. J. Physiol. 1971, 212, 34–35. [Google Scholar]
  70. Rossetto, O.; Morbiato, L.; Caccin, P.; Rigoni, M.; Montecucco, C. Presynaptic enzymatic neurotoxins. J. Neurochem. 2006, 97, 1534–1545. [Google Scholar] [CrossRef]
  71. Ribeiro, G.D.B.; De Almeida, H.C.; Velarde, D.T. Crotoxin in humans: Analysis of the effects on extraocular and facial muscles. Arq. Bras. Oftalmol. 2012, 75, 385–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Ribeiro, G.D.B.; De Almeida, H.C.; Velarde, D.T.; Sá, M.L.V.D.M. Study of crotoxin on the induction of paralysis in extraocular muscle in animal model. Arq. Bras. Oftalmol. 2012, 75, 307–312. [Google Scholar] [CrossRef]
  73. Cavalcante, W.L.; Noronha-Matos, J.B.; Timóteo, M.A.; Fontes, M.R.; Gallacci, M.; Correia-De-Sá, P. Neuromuscular paralysis by the basic phospholipase A 2 subunit of crotoxin from Crotalus durissus terrificus snake venom needs its acid chaperone to concurrently inhibit acetylcholine release and produce muscle blockage. Toxicol. Appl. Pharmacol. 2017, 334, 8–17. [Google Scholar] [CrossRef] [Green Version]
  74. Faure, G.; Bon, C. Several isoforms of crotoxin are present in individual venoms from the South American rattlesnake Crotalus durissus terrificus. Toxicon 1987, 25, 229–234. [Google Scholar] [CrossRef]
  75. Nemecz, D.; Ostrowski, M.; Ravatin, M.; Saul, F.; Faure, G. Crystal Structure of Isoform CBd of the Basic Phospholipase A2 Subunit of Crotoxin: Description of the Structural Framework of CB for Interaction with Protein Targets. Molecules 2020, 25, 5290. [Google Scholar] [CrossRef]
  76. Faure, G.; Bon, C. Crotoxin, a phospholipase A2 neurotoxin from the South American rattlesnake Crotalus durissus terrificus: Purification of several isoforms and comparison of their molecular structure and of their biological activities. Biochemistry 1988, 27, 730–738. [Google Scholar] [CrossRef]
  77. Faure, G.; Harvey, A.L.; Thomson, E.; Saliou, B.; Radvanyi, F.; Bon, C. Comparison of crotoxin isoforms reveals that stability of the complex plays a major role in its pharmacological action. Eur. J. Biochem. 1993, 214, 491–496. [Google Scholar] [CrossRef]
  78. Faure, G.; Xu, H.; Saul, F.A. Crystal Structure of Crotoxin Reveals Key Residues Involved in the Stability and Toxicity of This Potent Heterodimeric β-Neurotoxin. J. Mol. Biol. 2011, 412, 176–191. [Google Scholar] [CrossRef] [PubMed]
  79. Pereañez, J.A.; Gómez, I.D.; Patiño, A.C. Relationship between the structure and the enzymatic activity of crotoxin complex and its phospholipase A2 subunit: An in silico approach. J. Mol. Graph. Model. 2012, 35, 36–42. [Google Scholar] [CrossRef] [PubMed]
  80. Gutiérrez, J.M.; Cerdas, L. Mecanismo de acción de miotoxinas aisladas de venenos de serpientes [Mechanism of action of myotoxins isolated from snake venoms]. Rev. Biol. Trop. 1984, 32, 213–222. [Google Scholar] [PubMed]
  81. Breithaupt, H. Neurotoxic and myotoxic effects of crotalus phospholipase A and its complex with crotapotin. Naunyn Schmiedebergs Arch. Pharmacol. 1976, 292, 271–278. [Google Scholar] [CrossRef]
  82. Zornetta, I.; Caccin, P.; Fernandez, J.; Lomonte, B.; Gutierrez, J.M.; Montecucco, C. Envenomations by Bothrops and Crotalus Snakes Induce the Release of Mitochondrial Alarmins. PLOS Negl. Trop. Dis. 2012, 6, e1526. [Google Scholar] [CrossRef] [Green Version]
  83. Miyabara, E.; Tostes, R.; de Araújo, H.S.; Aoki, M.S.; Salvini, T.; Moriscot, A. Cyclosporin A attenuates skeletal muscle damage induced by crotoxin in rats. Toxicon 2004, 43, 35–42. [Google Scholar] [CrossRef]
  84. Dorandeu, F.; Pernot-Marino, I.; Veyret, J.; Perrichon, C.; Lallement, G. Secreted phospholipase A2-induced neurotoxicity and epileptic seizures after intracerebral administration: An unexplained heterogeneity as emphasized with paradoxin and crotoxin. J. Neurosci. Res. 1998, 54, 848–862. [Google Scholar] [CrossRef]
  85. Lomeo, R.D.S.; Gonçalves, A.P.D.F.; da Silva, C.N.; de Paula, A.T.; Santos, D.O.C.; Fortes-Dias, C.L.; Gomes, D.A.; de Lima, M.E. Crotoxin from Crotalus durissus terrificus snake venom induces the release of glutamate from cerebrocortical synaptosomes via N and P/Q calcium channels. Toxicon 2014, 85, 5–16. [Google Scholar] [CrossRef]
  86. Nogueira-Neto, F.D.S.; Amorim, R.L.; Brigatte, P.; Picolo, G.; Ferreira, W.A.; Gutierrez, V.P.; Conceição, I.M.; Della-Casa, M.S.; Takahira, R.K.; Nicoletti, J.L.M.; et al. The analgesic effect of crotoxin on neuropathic pain is mediated by central muscarinic receptors and 5-lipoxygenase-derived mediators. Pharmacol. Biochem. Behav. 2008, 91, 252–260. [Google Scholar] [CrossRef]
  87. de Andrade, C.M.; Rey, F.M.; Bianchini, F.J.; Sampaio, S.V.; Torqueti, M.R. Crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, as a potential tool against thrombosis development. Int. J. Biol. Macromol. 2019, 134, 653–659. [Google Scholar] [CrossRef]
  88. Sartim, M.A.; Menaldo, D.L.; Sampaio, S.V. Immunotherapeutic potential of Crotoxin: Anti-inflammatory and immunosuppressive properties. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Freitas, A.P.; Favoretto, B.C.; Clissa, P.B.; Sampaio, S.C.; Faquim-Mauro, E.L. Crotoxin Isolated from Crotalus durissus terrificus Venom Modulates the Functional Activity of Dendritic Cells via Formyl Peptide Receptors. J. Immunol. Res. 2018, 2018, 7873257. [Google Scholar] [CrossRef] [PubMed]
  90. Freitas, A.P.; Clissa, P.B.; Soto, D.R.; Câmara, N.O.; Faquim-Mauro, E.L. The modulatory effect of crotoxin and its phospholipase A2 subunit from Crotalus durissus terrificus venom on dendritic cells interferes with the generation of effector CD4+ T lymphocytes. Immunol. Lett. 2021, 240, 56–70. [Google Scholar] [CrossRef] [PubMed]
  91. Lima, T.S.; Neves, C.L.; Zambelli, V.O.; Lopes, F.S.; Sampaio, S.C.; Cirillo, M.C. Crotoxin, a rattlesnake toxin, down-modulates functions of bone marrow neutrophils and impairs the Syk-GTPase pathway. Toxicon 2017, 136, 44–55. [Google Scholar] [CrossRef] [PubMed]
  92. Lima, T.S.; Cataneo, S.C.; Iritus, A.C.C.; Sampaio, S.C.; Della-Casa, M.S.; Cirillo, M.C. Crotoxin, a rattlesnake toxin, induces a long-lasting inhibitory effect on phagocytosis by neutrophils. Exp. Biol. Med. 2012, 237, 1219–1230. [Google Scholar] [CrossRef]
  93. de Araújo Pimenta, L.; De Almeida, M.E.S.; Bretones, M.L.; Cirillo, M.C.; Curi, R.; Sampaio, S.C. Crotoxin promotes macrophage reprogramming towards an antiangiogenic phenotype. Sci. Rep. 2019, 9, 4281. [Google Scholar] [CrossRef] [Green Version]
  94. Pulido-Méndez, M.M.; Azuaje, E.; Rodríguez-Acosta, A. A novel activity on thymocytes cells exerted by the rattlesnake (Crotalus durissus cumanensis) venom. Biomedica 2021, 41, 449–457. [Google Scholar] [CrossRef]
  95. Rangel-Santos, A.; Lima, C.; Lopes-Ferreira, M.; Cardoso, D. Immunosuppresive role of principal toxin (crotoxin) of Crotalus durissus terrificus venom. Toxicon 2004, 44, 609–616. [Google Scholar] [CrossRef]
  96. Pulido-Méndez, M.M.; Azuaje, E.; Rodríguez-Acosta, A. Immunotoxinological effects triggered by the rattlesnake Crotalus durissus cumanensis, mapanare (Bothrops colombiensis) venoms and its purified fractions on spleen and lymph nodes cells. Immunopharmacol. Immunotoxicol. 2020, 42, 484–492. [Google Scholar] [CrossRef]
  97. Avalo, Z.; Barrera, M.C.; Agudelo-Delgado, M.; Tobón, G.J.; Cañas, C.A. Biological Effects of Animal Venoms on the Human Immune System. Toxins 2022, 14, 344. [Google Scholar] [CrossRef]
  98. Favoretto, B.; Ricardi, R.; Silva, S.; Jacysyn, J.; Fernandes, I.; Takehara, H.; Faquim-Mauro, E. Immunomodulatory effects of crotoxin isolated from Crotalus durissus terrificus venom in mice immunised with human serum albumin. Toxicon 2011, 57, 600–607. [Google Scholar] [CrossRef] [PubMed]
  99. Ownby, C.L.; Colberg, T.R. Comparison of the immunogenicity and antigenic composition of several venoms of snakes in the family Crotalidae. Toxicon 1990, 28, 189–199. [Google Scholar] [CrossRef] [PubMed]
  100. Schaeffer, R.C.; Randall, H.; Resk, J.; Carlson, R.W. Enzyme-linked immunosorbant assay (ELISA) of size-selected crotalid venom antigens by Wyeth’s polyvalent antivenom. Toxicon 1988, 26, 67–76. [Google Scholar] [CrossRef] [PubMed]
  101. Kalinski, P. Regulation of Immune Responses by Prostaglandin E2. J. Immunol. 2012, 188, 21–28. [Google Scholar] [CrossRef] [Green Version]
  102. Landucci, E.C.; Antunes, E.; Donato, J.L.; Faro, R.; Hyslop, S.; Marangoni, S.; Oliveira, B.; Cirino, G.; de Nucci, G. Inhibition of carrageenin-induced rat paw oedema by crotapotin, a polypeptide complexed with phospholipase A2. Br. J. Pharmacol. 1995, 114, 578–583. [Google Scholar] [CrossRef] [Green Version]
  103. Landucci, E.C.; Toyama, M.; Marangoni, S.; Oliveira, B.; Cirino, G.; Antunes, E.; De Nucci, G. Effect of crotapotin and heparin on the rat paw oedema induced by different secretory phospholipases A2. Toxicon 1999, 38, 199–208. [Google Scholar] [CrossRef]
  104. Garcia, F.; Toyama, M.H.; Castro, F.R.; Proença, P.L.; Marangoni, S.; Santos, L.M. Crotapotin induced modification of T lymphocyte proliferative response through interference with PGE2 synthesis. Toxicon 2003, 42, 433–437. [Google Scholar] [CrossRef]
  105. Bretones, M.L.; Sampaio, S.C.; Barbeiro, D.F.; Ariga, S.K.; Soriano, F.G.; de Lima, T.M. Crotoxin modulates inflammation and macrophages’ functions in a murine sepsis model. Toxicon 2022, 216, 132–138. [Google Scholar] [CrossRef]
  106. Teixeira, N.; Sant’Anna, M.; Giardini, A.; Araujo, L.; Fonseca, L.; Basso, A.; Cury, Y.; Picolo, G. Crotoxin down-modulates pro-inflammatory cells and alleviates pain on the MOG35-55-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Brain Behav. Immun. 2020, 84, 253–268. [Google Scholar] [CrossRef]
  107. Sant’Anna, M.B.; Giardini, A.C.; Ribeiro, M.A.C.; Lopes, F.S.R.; Teixeira, N.B.; Kimura, L.F.; Bufalo, M.C.; Ribeiro, O.G.; Borrego, A.; Cabrera, W.H.K.; et al. The Crotoxin:SBA-15 Complex Down-Regulates the Incidence and Intensity of Experimental Autoimmune Encephalomyelitis Through Peripheral and Central Actions. Front. Immunol. 2020, 11, 591563. [Google Scholar] [CrossRef]
  108. Almeida, C.D.S.; Andrade-Oliveira, V.; Câmara, N.O.S.; Jacysyn, J.F.; Faquim-Mauro, E.L. Crotoxin from Crotalus durissus terrificus Is Able to Down-Modulate the Acute Intestinal Inflammation in Mice. PLoS ONE 2015, 10, e0121427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  109. Shimizu, J.F.; Pereira, C.M.; Bittar, C.; Batista, M.N.; Campos, G.R.F.; Da Silva, S.; Cintra, A.C.O.; Zothner, C.; Harris, M.; Sampaio, S.V.; et al. Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle. PLoS ONE 2017, 12, e0187857. [Google Scholar] [CrossRef] [PubMed]
  110. Muller, V.D.; Soares, R.O.; dos Santos-Junior, N.N.; Trabuco, A.C.; Cintra, A.C.; Figueiredo, L.T.; Caliri, A.; Sampaio, S.V.; Aquino, V.H. Phospholipase A2 Isolated from the Venom of Crotalus durissus terrificus Inactivates Dengue virus and Other Enveloped Viruses by Disrupting the Viral Envelope. PLoS ONE 2014, 9, e112351. [Google Scholar] [CrossRef] [Green Version]
  111. Muller, V.D.M.; Russo, R.R.; Cintra, A.C.O.; Sartim, M.A.; Alves-Paiva, R.D.M.; Figueiredo, L.T.M.; Sampaio, S.V.; Aquino, V.H. Crotoxin and phospholipases A2 from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses. Toxicon 2012, 59, 507–515. [Google Scholar] [CrossRef]
  112. Santos, I.A.; Shimizu, J.F.; de Oliveira, D.M.; Martins, D.O.S.; Cardoso-Sousa, L.; Cintra, A.C.O.; Aquino, V.H.; Sampaio, S.V.; Nicolau-Junior, N.; Sabino-Silva, R.; et al. Chikungunya virus entry is strongly inhibited by phospholipase A2 isolated from the venom of Crotalus durissus terrificus. Sci. Rep. 2021, 11, 8717. [Google Scholar] [CrossRef] [PubMed]
  113. de Carvalho, A.E.Z.; Giannotti, K.; Junior, E.L.; Matsubara, M.; Dos Santos, M.C.; Fortes-Dias, C.L.; Teixeira, C. Crotalus durissus ruruimaSnake Venom and a Phospholipase A2Isolated from This Venom Elicit Macrophages to Form Lipid Droplets and Synthesize Inflammatory Lipid Mediators. J. Immunol. Res. 2019, 2019, 2745286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Canelli, A.P.; Rodrigues, T.F.D.S.; De Goes, V.F.F.; Caetano, G.F.; Mazzi, M.V. Evaluation of the Effectiveness of Crotoxin as an Antiseptic against Candida spp. Biofilms. Toxins 2020, 12, 532. [Google Scholar] [CrossRef]
  115. Quintana, J.; Chacón, A.; Vargas, L.; Segura, C.; Gutiérrez, J.; Alarcón, J. Antiplasmodial effect of the venom of Crotalus durissus cumanensis, crotoxin complex and Crotoxin B. Acta Trop. 2012, 124, 126–132. [Google Scholar] [CrossRef]
  116. Kato, E.E.; Pimenta, L.A.; de Almeida, M.E.S.; Zambelli, V.O.; dos Santos, M.F.; Sampaio, S.C. Crotoxin Inhibits Endothelial Cell Functions in Two- and Three-dimensional Tumor Microenvironment. Front. Pharmacol. 2021, 12, 713332. [Google Scholar] [CrossRef]
  117. Han, R.; Liang, H.; Qin, Z.H.; Liu, C.Y. Crotoxin induces apoptosis and autophagy in human lung carcinoma cells in vitro via activation of the p38MAPK signaling pathway. Acta Pharmacol. Sin. 2014, 35, 1323–1332. [Google Scholar] [CrossRef] [Green Version]
  118. Ye, B.; Xie, Y.; Qin, Z.-H.; Wu, J.-C.; Han, R.; He, J.-K. Anti-tumor activity of CrTX in human lung adenocarcinoma cell line A549. Acta Pharmacol. Sin. 2011, 32, 1397–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  119. Almeida, C.F.; Amaral, C.; Augusto, T.V.; Correia-Da-Silva, G.; de Andrade, C.M.; Torqueti, M.R.; Teixeira, N. The anti-cancer potential of crotoxin in estrogen receptor-positive breast cancer: Its effects and mechanism of action. Toxicon 2021, 200, 69–77. [Google Scholar] [CrossRef] [PubMed]
  120. Muller, S.P.; Silva, V.A.O.; Silvestrini, A.V.P.; de Macedo, L.H.; Caetano, G.F.; Reis, R.M.; Mazzi, M.V. Crotoxin from Crotalus durissus terrificus venom: In vitro cytotoxic activity of a heterodimeric phospholipase A2 on human cancer-derived cell lines. Toxicon 2018, 156, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  121. Faure, G.; Bakouh, N.; Lourdel, S.; Odolczyk, N.; Premchandar, A.; Servel, N.; Hatton, A.; Ostrowski, M.K.; Xu, H.; Saul, F.A.; et al. Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis. J. Mol. Biol. 2016, 428, 2898–2915. [Google Scholar] [CrossRef] [PubMed]
  122. De Oliveira, D.G.; Murakami, M.T.; Cintra, A.C.; Franco, J.J.; Sampaio, S.V.; Arni, R.K. Functional and structural analysis of two fibrinogen-activating enzymes isolated from the venoms of Crotalus durissus terrificus and Crotalus durissus collilineatus. Acta Biochim. Biophys. Sin. 2009, 41, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  123. Boldrini-França, J.; Rodrigues, R.S.; Santos-Silva, L.K.; De Souza, D.L.N.; Gomes, M.S.R.; Cologna, C.T.; De Pauw, E.; Quinton, L.; Henrique-Silva, F.; Rodrigues, V.D.M.; et al. Expression of a new serine protease from Crotalus durissus collilineatus venom in Pichia pastoris and functional comparison with the native enzyme. Appl. Microbiol. Biotechnol. 2015, 99, 9971–9986. [Google Scholar] [CrossRef]
  124. Ferreira, R.S., Jr.; De Barros, L.C.; Abbade, L.P.F.; Barraviera, S.R.C.S.; Silvares, M.R.C.; De Pontes, L.G.; Dos Santos, L.D.; Barraviera, B. Heterologous fibrin sealant derived from snake venom: From bench to bedside––An overview. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 21. [Google Scholar] [CrossRef] [Green Version]
  125. Raw, I.; Rocha, M.C.; I Esteves, M.; Kamiguti, A.S. Isolation and characterization of a thrombin-like enzyme from the venom of Crotalus durissus terrificus. Braz. J. Med. Biol. Res. 1986, 19, 333–338. [Google Scholar]
  126. Barros, L.C.; Ferreira, R.S., Jr.; Barraviera, S.R.C.S.; Stolf, H.O.; Thomazini-Santos, I.A.; Mendes-Giannini, M.J.S.; Toscano, E.; Barraviera, B. A New Fibrin Sealant From Crotalus durissus terrificus Venom: Applications in Medicine. J. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 553–571. [Google Scholar] [CrossRef]
  127. Frauz, K.; Teodoro, L.F.R.; Carneiro, G.D.; da Veiga, F.C.; Ferrucci, D.L.; Bombeiro, A.L.; Simões, P.W.; Alvares, L.E.; de Oliveira, A.L.R.; Vicente, C.P.; et al. Transected Tendon Treated with a New Fibrin Sealant Alone or Associated with Adipose-Derived Stem Cells. Cells 2019, 8, 56. [Google Scholar] [CrossRef] [Green Version]
  128. Barros, C.N.D.U.; Yamada, A.L.; Junior, R.S.F.U.; Barraviera, B.; Hussni, C.; Souza, J.B.D.U.; Watanabe, M.J.U.; Rodrigues, C.A.U.; Alves, A.L.G.U. A new heterologous fibrin sealant as a scaffold to cartilage repair—Experimental study and preliminary results. Exp. Biol. Med. 2015, 241, 1410–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  129. de Castro, M.V.; Barbizan, R.; Ferreira, R.S.; Barraviera, B.; de Oliveira, A.L.R. Direct Spinal Ventral Root Repair following Avulsion: Effectiveness of a New Heterologous Fibrin Sealant on Motoneuron Survival and Regeneration. Neural Plast. 2016, 2016, 2932784. [Google Scholar] [CrossRef] [Green Version]
  130. O Gasparotto, V.P.; Landim-Alvarenga, F.C.; Oliveira, A.L.R.; Simões, G.F.; Lima-Neto, J.F.; Barraviera, B.; Ferreira, R. A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells. Stem Cell Res. Ther. 2014, 5, 78. [Google Scholar] [CrossRef] [PubMed]
  131. Da-Silva-Freitas, D.; Boldrini-França, J.; Arantes, E. PEGylation: A successful approach to improve the biopharmaceutical potential of snake venom thrombin-like serine protease. Protein Pept. Lett. 2015, 22, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
  132. Boldrini-França, J.; Pinheiro-Junior, E.L.; Peigneur, S.; Pucca, M.B.; Cerni, F.A.; Borges, R.J.; Costa, T.R.; Carone, S.E.I.; Fontes, M.R.D.M.; Sampaio, S.V.; et al. Beyond hemostasis: A snake venom serine protease with potassium channel blocking and potential antitumor activities. Sci. Rep. 2020, 10, 4476. [Google Scholar] [CrossRef] [Green Version]
  133. Alexander, G.; Grothusen, J.; Zepeda, H.; Schwartzman, R.J. Gyroxin, a toxin from the venom of Crotalus durissus terrificus, is a thrombin-like enzyme. Toxicon 1988, 26, 953–960. [Google Scholar] [CrossRef]
  134. Ferrari, C.; Ribeiro, R.; Lima, A.; Soares, A.; Cavalcante, W.; Vieira, L. Gyroxin, a toxin from Crotalus durissus terrificus snake venom, induces a calcium dependent increase in glutamate release in mice brain cortical synaptosomes. Neuropeptides 2020, 83, 102081. [Google Scholar] [CrossRef]
  135. da Silva, J.A.; Oliveira, K.; Camillo, M. Gyroxin increases blood-brain barrier permeability to Evans blue dye in mice. Toxicon 2011, 57, 162–167. [Google Scholar] [CrossRef]
  136. Sousa, I.D.; Barbosa, A.R.; Salvador, G.H.; Frihling, B.E.; Santa-Rita, P.H.; Soares, A.M.; Pessôa, H.L.; Marchi-Salvador, D.P. Secondary hemostasis studies of crude venom and isolated proteins from the snake Crotalus durissus terrificus. Int. J. Biol. Macromol. 2019, 131, 127–133. [Google Scholar] [CrossRef]
  137. Costa, C.R.C.; Belchor, M.N.; Rodrigues, C.F.B.; Toyama, D.D.O.; De Oliveira, M.A.; Novaes, D.P.; Toyama, M.H. Edema Induced by a Crotalus durissus terrificus Venom Serine Protease (Cdtsp 2) Involves the PAR Pathway and PKC and PLC Activation. Int. J. Mol. Sci. 2018, 19, 2405. [Google Scholar] [CrossRef] [Green Version]
  138. Zychar, B.C.; Dale, C.S.; Demarchi, D.S.; Gonçalves, L.R.C. Contribution of metalloproteases, serine proteases and phospholipases A2 to the inflammatory reaction induced by Bothrops jararaca crude venom in mice. Toxicon 2010, 55, 227–234. [Google Scholar] [CrossRef] [PubMed]
  139. Murakami, M.; Zela, S.; Gava, L.; Michelan-Duarte, S.; Cintra, A.; Arni, R. Crystal structure of the platelet activator convulxin, a disulfide-linked α4β4 cyclic tetramer from the venom of Crotalus durissus terrificus. Biochem. Biophys. Res. Commun. 2003, 310, 478–482. [Google Scholar] [CrossRef] [PubMed]
  140. Batuwangala, T.; LeDuc, M.; Gibbins, J.; Bon, C.; Jones, E.Y. Structure of the snake-venom toxin convulxin. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003, 60, 46–53. [Google Scholar] [CrossRef] [PubMed]
  141. Francischetti, I.M.; Saliou, B.; Leduc, M.; Carlini, C.R.; Hatmi, M.; Randon, J.; Faili, A.; Bon, C. COnvulxin, a potent platelet-aggregating protein from Crotalus durissus terrificus venom, specifically binds to platelets. Toxicon 1997, 35, 1217–1228. [Google Scholar] [CrossRef]
  142. Prado-Franceschi, J.; Brazil, O.V. Convulxin, a new toxin from the venom of the South American rattlesnake Crotalus durissus terrificus. Toxicon 1981, 19, 875–887. [Google Scholar] [CrossRef]
  143. Rego, C.M.A.; Francisco, A.F.; Boeno, C.N.; Paloschi, M.V.; Lopes, J.A.; Silva, M.D.S.; Santana, H.M.; Serrath, S.N.; Rodrigues, J.E.; Lemos, C.T.L.; et al. Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci. Rep. 2022, 12, 4706. [Google Scholar] [CrossRef]
  144. Ramos, O.; Selistre-De-Araujo, H. Snake venom metalloproteases—Structure and function of catalytic and disintegrin domains. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 142, 328–346. [Google Scholar] [CrossRef]
  145. Hite, L.; Jia, L.; Bjarnason, J.; Fox, J. cDNA Sequences for Four Snake Venom Metalloproteinases: Structure, Classification, and Their Relationship to Mammalian Reproductive Proteins. Arch. Biochem. Biophys. 1994, 308, 182–191. [Google Scholar] [CrossRef]
  146. Gutiérrez, J.M.; Rucavado, A.; Escalante, T.; Díaz, C. Hemorrhage induced by snake venom metalloproteinases: Biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 2005, 45, 997–1011. [Google Scholar] [CrossRef]
  147. Herrera, C.; Voisin, M.B.; Escalante, T.; Rucavado, A.; Nourshargh, S.; Gutiérrez, J.M. Effects of PI and PIII Snake Venom Haemorrhagic Metalloproteinases on the Microvasculature: A Confocal Microscopy Study on the Mouse Cremaster Muscle. PLoS ONE 2016, 11, e0168643. [Google Scholar] [CrossRef] [Green Version]
  148. Butera, D.; Tanjoni, I. Importance of Snake Venom Metalloproteinases in Cell Biology: Effects on Platelets, Inflammatory and Endothelial Cells. Curr. Pharm. Des. 2007, 13, 2893–2905. [Google Scholar] [CrossRef]
  149. Calvete, J.J. The continuing saga of snake venom disintegrins. Toxicon 2013, 62, 40–49. [Google Scholar] [CrossRef] [PubMed]
  150. Gould, R.J.; Polokoff, M.A.; Friedman, P.A.; Huang, T.-F.; Holt, J.C.; Cook, J.J.; Niewiarowski, S. Disintegrins: A Family of Integrin Inhibitory Proteins from Viper Venoms. Proc. Soc. Exp. Biol. Med. 1990, 195, 168–171. [Google Scholar] [CrossRef] [PubMed]
  151. Kini, R.; Evans, H.J. Structural domains in venom proteins: Evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon 1992, 30, 265–293. [Google Scholar] [CrossRef] [PubMed]
  152. Cañas, C.A.; Castro-Herrera, F.; Castaño-Valencia, S. Clinical syndromes associated with Viperidae family snake envenomation in southwestern Colombia. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 51–56. [Google Scholar] [CrossRef]
  153. Staniszewska, I.; Walsh, E.M.; Rothman, V.L.; Gaathon, A.; Tuszynski, G.P.; Calvete, J.J.; Lazarovici, P.; Marcinkiewicz, C. Effect of VP12 and viperistatin on inhibition of collagen-receptor-dependent melanoma metastasis. Cancer Biol. Ther. 2009, 8, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
  154. Toyama, M.H.; Marangoni, S.; Novello, J.C.; Leite, G.B.; Prado-Franceschi, J.; da Cruz-Höfling, M.A.; Rodrigues-Simioni, L. Biophysical, histopathological and pharmacological characterization of crotamine isoforms F22 and F32. Toxicon 2003, 41, 493–500. [Google Scholar] [CrossRef]
  155. Ponce-Soto, L.A.; Martins-De-Souza, D.; Marangoni, S. Structural and pharmacological characterization of the crotamine isoforms III-4 (MYX4_CROCu) and III-7 (MYX7_CROCu) isolated from the Crotalus durissus cumanensis venom. Toxicon 2010, 55, 1443–1452. [Google Scholar] [CrossRef]
  156. Oguiura, N.; Camargo, M.; da Silva, A.; Horton, D. Quantification of crotamine, a small basic myotoxin, in South American rattlesnake (Crotalus durissus terrificus) venom by enzyme-linked immunosorbent assay with parallel-lines analysis. Toxicon 2000, 38, 443–448. [Google Scholar] [CrossRef]
  157. Laure, C.J. Die Primärstruktur des Crotamins [The primary structure of crotamine (author’s transl)]. Hoppe Seylers Z. Physiol. Chem. 1975, 356, 213–215. [Google Scholar]
  158. Beltran, J.R.; Mascarenhas, Y.P.; Craievich, A.F.; Laure, C.J. SAXS study of the snake toxin alpha-crotamine. Eur. Biophys. J. 1990, 17, 325–329. [Google Scholar] [CrossRef] [PubMed]
  159. Fadel, V.; Bettendorff, P.; Herrmann, T.; Jr, W.F.D.A.; Oliveira, E.B.; Yamane, T.; Wüthrich, K. Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus. Toxicon 2005, 46, 759–767. [Google Scholar] [CrossRef] [PubMed]
  160. Coronado, M.A.; Georgieva, D.; Buck, F.; Gabdoulkhakov, A.H.; Ullah, A.; Spencer, P.J.; Arni, R.K.; Betzel, C. Purification, crystallization and preliminary X-ray diffraction analysis of crotamine, a myotoxic polypeptide from the Brazilian snake Crotalus durissus terrificus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 1052–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  161. Cameron, D.L.; Tu, A.T. Chemical and functional homology of myotoxin a from prairie rattlesnake venom and crotamine from south american rattlesnake venom. Biochim. Biophys. Acta 1978, 532, 147–154. [Google Scholar] [CrossRef]
  162. Oguiura, N.; Boni-Mitake, M.; Rádis-Baptista, G. New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon 2005, 46, 363–370. [Google Scholar] [CrossRef]
  163. Chang, C.C.; Tseng, K.H. Effect of crotamine, a toxin of South American rattlesnake venom, on the sodium channel of murine skeletal muscle. Br. J. Pharmacol. 1978, 63, 551–559. [Google Scholar] [CrossRef] [Green Version]
  164. Radis-Baptista, G. Crotamine, a Small Basic Polypeptide Myotoxin from Rattlesnake Venom with Cell-Penetrating Properties. Curr. Pharm. Des. 2011, 17, 4351–4361. [Google Scholar] [CrossRef]
  165. Brazil, O.V.; Fontana, M.D. Toxins as tools in the study of sodium channel distribution in the muscle fibre membrane. Toxicon 1993, 31, 1085–1098. [Google Scholar] [CrossRef]
  166. da Cunha, D.B.; Silvestrini, A.; da Silva, A.C.G.; Estevam, D.M.D.P.; Pollettini, F.L.; de Oliveira Navarro, J.; Alves, A.A.; Beretta, A.L.R.Z.; Bizzacchi, J.M.A.; Pereira, L.C.; et al. Mechanistic insights into functional characteristics of native crotamine. Toxicon 2018, 146, 1–12. [Google Scholar] [CrossRef] [Green Version]
  167. Goncalves, J.M.; Polson, A. The electrophoretic analysis of snake venoms. Arch. Biochem. 1947, 13, 253–259. [Google Scholar]
  168. Kerkis, A.; Kerkis, I.; Rádis-Baptista, G.; Oliveira, E.B.; Vianna-Morgante, A.M.; Pereira, L.V.; Yamane, T. Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J. 2004, 18, 1407–1409. [Google Scholar] [CrossRef] [Green Version]
  169. Chen, P.-C.; Hayashi, M.A.F.; Oliveira, E.B.; Karpel, R.L. DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE 2012, 7, e48913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  170. Sieber, M.; Bosch, B.; Hanke, W.; de Lima, V.M.F. Membrane-modifying properties of crotamine, a small peptide-toxin from Crotalus durissus terifficus venom. Biochim. Biophys. Acta 2014, 1840, 945–950. [Google Scholar] [CrossRef] [PubMed]
  171. Eberle, R.J.; Gering, I.; Tusche, M.; Ostermann, P.N.; Müller, L.; Adams, O.; Schaal, H.; Olivier, D.S.; Amaral, M.S.; Arni, R.K.; et al. Design of D-Amino Acids SARS-CoV-2 Main Protease Inhibitors Using the Cationic Peptide from Rattlesnake Venom as a Scaffold. Pharmaceuticals 2022, 15, 540. [Google Scholar] [CrossRef] [PubMed]
  172. Oguiura, N.; Boni-Mitake, M.; Affonso, R.; Zhang, G. In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. J. Antibiot. 2011, 64, 327–331. [Google Scholar] [CrossRef] [PubMed]
  173. Dal Mas, C.; Rossato, L.; Shimizu, T.; Oliveira, E.B.; da Silva Junior, P.I.; Meis, J.F.; Colombo, A.L.; Hayashi, M.A.F. Effects of the Natural Peptide Crotamine from a South American Rattlesnake on Candida auris, an Emergent Multidrug Antifungal Resistant Human Pathogen. Biomolecules 2019, 9, 205. [Google Scholar] [CrossRef] [Green Version]
  174. Yamane, E.S.; Bizerra, F.C.; Oliveira, E.B.; Moreira, J.T.; Rajabi, M.; Nunes, G.L.; de Souza, A.O.; da Silva, I.D.; Yamane, T.; Karpel, R.L.; et al. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie 2013, 95, 231–240. [Google Scholar] [CrossRef] [Green Version]
  175. Macedo, S.R.A.; de Barros, N.B.; Ferreira, A.S.; Moreira-Dill, L.S.; Calderon, L.A.; Soares, A.M.; Nicolete, R. Biodegradable Microparticles Containing Crotamine Isolated from Crotalus durissus terrificus Display Antileishmanial Activity in vitro. Pharmacology 2015, 95, 78–86. [Google Scholar] [CrossRef]
  176. Katz, S.; Barbiéri, C.L.; Soler, F.P.M.; Soares, A.M.; Chavantes, M.C.; Zamuner, S.R. Effect of Isolated Proteins from Crotalus Durissus Terrificus Venom on Leishmania (Leishmania) Amazonensis-Infected Macrophages. Protein Pept. Lett. 2020, 27, 718–724. [Google Scholar] [CrossRef]
  177. Valentim-Silva, J.R.; de Barros, N.B.; Macedo, S.R.; Ferreira, A.d.S.; Silva, R.S.; Dill, L.S.; Zanchi, F.B.; Nascimento, J.R.D.; Nascimento, F.R.D.; Lourenzoni, M.R.; et al. Antileishmanial activity, cytotoxicity and cellular response of amphotericin B in combination with crotamine derived from Crotalus durissus terrificus venom using in vitro and in silico approaches. Toxicon 2022, 217, 96–106. [Google Scholar] [CrossRef]
  178. Mas, C.D.; Moreira, J.; Pinto, S.; Monte, G.; Nering, M.; Oliveira, E.; Gazarini, M.; Mori, M.; Hayashi, M. Anthelmintic effects of a cationic toxin from a South American rattlesnake venom. Toxicon 2016, 116, 49–55. [Google Scholar] [CrossRef]
  179. Maluf, S.E.C.; Mas, C.D.; Oliveira, E.; Melo, P.; Carmona, A.; Gazarini, M.; Hayashi, M. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides 2016, 78, 11–16. [Google Scholar] [CrossRef] [PubMed]
  180. Campeiro, J.D.; Marinovic, M.P.; Carapeto, F.C.; Mas, C.D.; Monte, G.G.; Porta, L.C.; Nering, M.B.; Oliveira, E.B.; Hayashi, M.A.F. Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids 2017, 50, 267–278. [Google Scholar] [CrossRef] [PubMed]
  181. More, S.A.; Moreira, L.C.; Magalhães, M.R.; Valadares, M.C.; da Cunha, L.C. Cytotoxic activity in basal and tumoral cell lines of the C0K3N3 protein from the snake venom Crotalus durissus collilineatus, variety crotamine negative. Toxicon 2022, 210, 155–157. [Google Scholar] [CrossRef]
  182. Hayashi, M.A.F.; Oliveira, E.B.; Kerkis, I.; Karpel, R.L. Crotamine: A Novel Cell-Penetrating Polypeptide Nanocarrier with Potential Anti-Cancer and Biotechnological Applications. Methods Mol. Biol. 2012, 906, 337–352. [Google Scholar] [CrossRef]
  183. Silvestrini, A.V.P.; de Macedo, L.H.; de Andrade, T.A.M.; Mendes, M.F.; Pigoso, A.A.; Mazzi, M.V. Intradermal Application of Crotamine Induces Inflammatory and Immunological Changes In Vivo. Toxins 2019, 11, 39. [Google Scholar] [CrossRef] [Green Version]
  184. Lee, K.J.; Kim, Y.K.; Krupa, M.; Nguyen, A.N.; Do, B.H.; Chung, B.; Vu, T.T.T.; Kim, S.C.; Choe, H. Crotamine stimulates phagocytic activity by inducing nitric oxide and TNF-α via p38 and NFκ-B signaling in RAW 264.7 macrophages. BMB Rep. 2016, 49, 185–190. [Google Scholar] [CrossRef] [Green Version]
  185. Park, J.Y.; Do, B.H.; Lee, J.-S.; Yang, H.C.; Nguyen, A.N.; Krupa, M.; Kim, C.J.; Jang, Y.J.; Choe, H. Antinociceptive and Anti-Inflammatory Effects of Recombinant Crotamine in Mouse Models of Pain. Toxins 2021, 13, 707. [Google Scholar] [CrossRef]
  186. Moreira, L.A.; Oliveira, L.P.; Magalhães, M.R.; Oliveira, S.A.M.; Oliveira-Neto, J.R.; Carvalho, P.M.G.; Carvalho, A.A.V.; Fajemiroye, J.O.; Cruz, A.C.; Cunha, L.C. Acute toxicity, antinociceptive, and anti-inflammatory activities of the orally administered crotamine in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 1703–1711. [Google Scholar] [CrossRef]
  187. Du, X.-Y.; Clemetson, K.J. Snake venom l-amino acid oxidases. Toxicon 2002, 40, 659–665. [Google Scholar] [CrossRef] [PubMed]
  188. Bordon, K.C.F.; Wiezel, G.A.; Cabral, H.; Arantes, E.C. Bordonein-L, a new L-amino acid oxidase from Crotalus durissus terrificus snake venom: Isolation, preliminary characterization and enzyme stability. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 26. [Google Scholar] [CrossRef] [Green Version]
  189. Ali, S.A.; Stoevab, S.; Abbasia, A.; Alam, J.M.; Kayedb, R.; Faigled, M.; Neumeisterd, B.; Voelterb, W. Isolation, Structural, and Functional Characterization of an Apoptosis-Inducing -Amino Acid Oxidase from Leaf-Nosed Viper (Eristocophis macmahoni) Snake Venom. Arch. Biochem. Biophys. 2000, 384, 216–226. [Google Scholar] [CrossRef] [PubMed]
  190. Teixeira, T.L.; Silva, V.A.O.; da Cunha, D.B.; Polettini, F.L.; Thomaz, C.D.; Pianca, A.A.; Zambom, F.L.; Mazzi, D.P.D.S.L.; Reis, R.M.; Mazzi, M.V. Isolation, characterization and screening of the in vitro cytotoxic activity of a novel L-amino acid oxidase (LAAOcdt) from Crotalus durissus terrificus venom on human cancer cell lines. Toxicon 2016, 119, 203–217. [Google Scholar] [CrossRef] [PubMed]
  191. Li, Z.-Y.; Yu, T.-F.; Lian, E.C.-Y. Purification and characterization of l-amino acid oxidase from king cobra (Ophiophagus hannah) venom and its effects on human platelet aggregation. Toxicon 1994, 32, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
  192. Lazo, F.; Vivas-Ruiz, D.E.; Sandoval, G.A.; Rodríguez, E.F.; Kozlova, E.E.; Costal-Oliveira, F.; Chávez-Olórtegui, C.; Severino, R.; Yarlequé, A.; Sanchez, E.F. Biochemical, biological and molecular characterization of an L-Amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom. Toxicon 2017, 139, 74–86. [Google Scholar] [CrossRef]
  193. Sakurai, Y.; Shima, M.; Matsumoto, T.; Takatsuka, H.; Nishiya, K.; Kasuda, S.; Fujimura, Y.; Yoshioka, A. Anticoagulant activity of M-LAO, l-amino acid oxidase purified from Agkistrodon halys blomhoffii, through selective inhibition of factor IX. Biochim. Biophys. Acta 2003, 1649, 51–57. [Google Scholar] [CrossRef]
  194. Zhang, Y.-J.; Wang, J.-H.; Lee, W.-H.; Wang, Q.; Liu, H.; Zheng, Y.-T.; Zhang, Y. Molecular characterization of Trimeresurus stejnegeri venom l-amino acid oxidase with potential anti-HIV activity. Biochem. Biophys. Res. Commun. 2003, 309, 598–604. [Google Scholar] [CrossRef]
  195. Torres, A.F.C.; Dantas, R.T.; Toyama, M.H.; Filho, E.D.; Zara, F.J.; de Queiroz, M.G.R.; Nogueira, N.A.P.; de Oliveira, M.R.; Toyama, D.D.O.; Monteiro, H.S.; et al. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and l-amino acid oxidase. Toxicon 2010, 55, 795–804. [Google Scholar] [CrossRef]
  196. Toyama, M.H.; Toyama, D.D.O.; Passero, L.F.; Laurenti, M.D.; Corbett, C.E.; Tomokane, T.Y.; Fonseca, F.V.; Antunes, E.; Joazeiro, P.P.; Beriam, L.O.; et al. Isolation of a new l-amino acid oxidase from Crotalus durissus cascavella venom. Toxicon 2006, 47, 47–57. [Google Scholar] [CrossRef]
  197. Wiezel, G.; Rustiguel, J.K.; Morgenstern, D.; Zoccal, K.F.; Faccioli, L.H.; Nonato, M.C.; Ueberheide, B.; Arantes, E.C. Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom. Biochimie 2019, 163, 33–49. [Google Scholar] [CrossRef]
  198. Vargas, L.J.; Quintana, J.C.; Pereañez, J.A.; Núñez, V.; Sanz, L.; Calvete, J. Cloning and characterization of an antibacterial l-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon 2013, 64, 1–11. [Google Scholar] [CrossRef] [PubMed]
  199. Teodoro, A.; Gonçalves, F.J.M.; Oliveira, H.; Marques, S. Venom of Viperidae: A Perspective of its Antibacterial and Antitumor Potential. Curr. Drug Targets 2022, 23, 126–144. [Google Scholar] [CrossRef] [PubMed]
  200. E Silva, M.R.; Beraldo, W.T.; Rosenfeld, G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am. J. Physiol. 1949, 156, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  201. Ng, K.K.F.; Vane, J.R. Conversion of Angiotensin I to Angiotensin II. Nature 1967, 216, 762–766. [Google Scholar] [CrossRef] [PubMed]
  202. Cushman, D.W.; Ondetti, M.A. Design of angiotensin converting enzyme inhibitors. Nat. Med. 1999, 5, 1110–1112. [Google Scholar] [CrossRef]
  203. Available online: https://www.nobelprize.org/prizes/medicine/1982/vane/facts/ (accessed on 5 December 2022).
  204. Lopes, D.M.; Junior, N.E.; Costa, P.P.; Martins, P.L.; Santos, C.F.; Carvalho, E.D.; Carvalho, M.D.; Pimenta, D.C.; Cardi, B.A.; Fonteles, M.C.; et al. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake). Toxicon 2014, 90, 36–44. [Google Scholar] [CrossRef]
  205. Giorgi, R.; Bernardi, M.; Cury, Y. Analgesic effect evoked by low molecular weight substances extracted from Crotalus durissus terrificus venom. Toxicon 1993, 31, 1257–1265. [Google Scholar] [CrossRef]
  206. Konno, K.; Picolo, G.; Gutierrez, V.P.; Brigatte, P.; Zambelli, V.O.; Camargo, A.C.; Cury, Y. Crotalphine, a novel potent analgesic peptide from the venom of the South American rattlesnake Crotalus durissus terrificus. Peptides 2008, 29, 1293–1304. [Google Scholar] [CrossRef]
  207. Gutierrez, V.P.; Konno, K.; Chacur, M.; Sampaio, S.C.; Picolo, G.; Brigatte, P.; Zambelli, V.O.; Cury, Y. Crotalphine induces potent antinociception in neuropathic pain by acting at peripheral opioid receptors. Eur. J. Pharmacol. 2008, 594, 84–92. [Google Scholar] [CrossRef]
  208. Picolo, G.; Cassola, A.C.; Cury, Y. Activation of peripheral ATP-sensitive K+ channels mediates the antinociceptive effect of Crotalus durissus terrificus snake venom. Eur. J. Pharmacol. 2003, 469, 57–64. [Google Scholar] [CrossRef]
  209. Machado, F.C.; O Zambelli, V.; O Fernandes, A.C.; Heimann, A.S.; Cury, Y.; Picolo, G. Peripheral interactions between cannabinoid and opioid systems contribute to the antinociceptive effect of crotalphine. Br. J. Pharmacol. 2014, 171, 961–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  210. de Freitas, B.G.; Hösch, N.G.; Pereira, L.M.; Barbosa, T.C.; Picolo, G.; Cury, Y.; Zambelli, V.O. PKCζ-Mitogen-Activated Protein Kinase Signaling Mediates Crotalphine-Induced Antinociception. Toxins 2021, 13, 912. [Google Scholar] [CrossRef] [PubMed]
  211. Gutierrez, V.P.; Zambelli, V.O.; Picolo, G.; Chacur, M.; Sampaio, S.C.; Brigatte, P.; Konno, K.; Cury, Y. The peripheral L-arginine–nitric oxide–cyclic GMP pathway and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine on neuropathic pain in rats. Behav. Pharmacol. 2012, 23, 14–24. [Google Scholar] [CrossRef] [PubMed]
  212. Bressan, E.; Touska, F.; Vetter, I.; Kistner, K.; Kichko, T.I.; Teixeira, N.B.; Picolo, G.; Cury, Y.; Lewis, R.J.; Fischer, M.J.; et al. Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia. Pain 2016, 157, 2504–2516. [Google Scholar] [CrossRef]
  213. da Costa, D.S.M.; Meotti, F.C.; Andrade, E.L.; Leal, P.C.; Motta, E.M.; Calixto, J.B. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 2010, 148, 431–437. [Google Scholar] [CrossRef] [PubMed]
  214. Giardini, A.C.; Evangelista, B.G.; Sant’Anna, M.B.; Martins, B.B.; Lancellotti, C.L.P.; Ciena, A.P.; Chacur, M.; Pagano, R.L.; Ribeiro, O.G.; Zambelli, V.O.; et al. Crotalphine Attenuates Pain and Neuroinflammation Induced by Experimental Autoimmune Encephalomyelitis in Mice. Toxins 2021, 13, 827. [Google Scholar] [CrossRef] [PubMed]
  215. Pérez-Peinado, C.; Dias, S.A.; Domingues, M.M.; Benfield, A.H.; Freire, J.M.; Rádis-Baptista, G.; Gaspar, D.; Castanho, M.A.R.B.; Craik, D.J.; Henriques, S.T.; et al. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15–34), antimicrobial peptides from rattlesnake venom. J. Biol. Chem. 2018, 293, 1536–1549. [Google Scholar] [CrossRef] [Green Version]
  216. Bandeira, I.C.J.; Bandeira-Lima, D.; Mello, C.P.; Pereira, T.P.; De Menezes, R.R.P.P.B.; Sampaio, T.L.; Falcão, C.B.; Rádis-Baptista, G.; Martins, A.M.C. Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in Crotalus durissus terrificus rattlesnake’s venom gland. Parasitology 2017, 145, 1059–1064. [Google Scholar] [CrossRef]
  217. Cavalcante, C.S.P.; Aguiar, L.; Fontenelle, R.O.S.; Menezes, R.; Martins, A.M.C.; Falcao, C.; Andreu, D.; Rádis-Baptista, G. Insights into the candidacidal mechanism of Ctn[15–34]—A carboxyl-terminal, crotalicidin-derived peptide related to cathelicidins. J. Med. Microbiol. 2018, 67, 129–138. [Google Scholar] [CrossRef]
  218. Aguiar, F.; Santos, N.; Cavalcante, C.D.P.; Andreu, D.; Baptista, G.; Gonçalves, S. Antibiofilm Activity on Candida albicans and Mechanism of Action on Biomembrane Models of the Antimicrobial Peptide Ctn[15–34]. Int. J. Mol. Sci. 2020, 21, 8339. [Google Scholar] [CrossRef]
  219. Pérez-Peinado, C.; Valle, J.; Freire, J.M.; Andreu, D. Tumor Cell Attack by Crotalicidin (Ctn) and Its Fragment Ctn[15–34]: Insights into Their Dual Membranolytic and Intracellular Targeting Mechanism. ACS Chem. Biol. 2020, 15, 2945–2957. [Google Scholar] [CrossRef] [PubMed]
  220. Falcao, C.B.; Radis-Baptista, G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2019, 126, 170234. [Google Scholar] [CrossRef] [PubMed]
  221. Oliveira-Júnior, N.G.; Freire, M.S.; Almeida, J.A.; Rezende, T.M.; Franco, O.L. Antimicrobial and proinflammatory effects of two vipericidins. Cytokine 2018, 111, 309–316. [Google Scholar] [CrossRef] [PubMed]
  222. Evangelista, J.S.; Martins, A.M.; Nascimento, N.R.; Sousa, C.M.; Alves, R.S.; Toyama, D.O.; Toyama, M.H.; Evangelista, J.J.F.; de Menezes, D.B.; Fonteles, M.C.; et al. Renal and vascular effects of the natriuretic peptide isolated from Crotalus durissus cascavella venom. Toxicon 2008, 52, 737–744. [Google Scholar] [CrossRef] [PubMed]
  223. Aires, R.S.; Filho, L.F.d.S.; Ferreira, L.F.G.R.; Hernandes, M.Z.; Marcondes, M.F.M.; Carmona, A.K.; da Paixão, A.D.O.; Vieira, L.D. NPCdc, a synthetic natriuretic peptide, is a substrate to neprilysin and enhances blood pressure-lowering induced by enalapril in 5/6 nephrectomized rats. Toxicon 2021, 203, 30–39. [Google Scholar] [CrossRef]
  224. Girish, K.; Shashidharamurthy, R.; Nagaraju, S.; Gowda, T.; Kemparaju, K. Isolation and characterization of hyaluronidase a “spreading factor” from Indian cobra (Naja naja) venom. Biochimie 2004, 86, 193–202. [Google Scholar] [CrossRef]
  225. Xu, X.; Wang, X.; Xi, X.; Liu, J.; Huang, J.; Lu, Z. Purification and partial characterization of hyaluronidase from five pace snake (Agkistrodon acutus) venom. Toxicon 1982, 20, 973–981. [Google Scholar] [CrossRef]
  226. Tu, A.T.; Hendon, R.R. Characterization of lizard venom hyaluronidase and evidence for its action as a spreading factor. Comp. Biochem. Physiol. B 1983, 76, 377–383. [Google Scholar] [CrossRef]
  227. Bordon, K.C.; Perino, M.G.; Giglio, J.R.; Arantes, E.C. Isolation, enzymatic characterization and antiedematogenic activity of the first reported rattlesnake hyaluronidase from Crotalus durissus terrificus venom. Biochimie 2012, 94, 2740–2748. [Google Scholar] [CrossRef]
  228. de Oliveira, I.S.; Pucca, M.B.; Wiezel, G.A.; Cardoso, I.A.; Bordon, K.D.C.F.; Sartim, M.A.; Kalogeropoulos, K.; Ahmadi, S.; Baiwir, D.; Nonato, M.C.; et al. Unraveling the structure and function of CdcPDE: A novel phosphodiesterase from Crotalus durissus collilineatus snake venom. Int. J. Biol. Macromol. 2021, 178, 180–192. [Google Scholar] [CrossRef]
  229. Souza-Imberg, A.; Carneiro, S.M.; Giannotti, K.C.; Sant’Anna, S.S.; Yamanouye, N. Origin and characterization of small membranous vesicles present in the venom of Crotalus durissus terrificus. Toxicon 2017, 136, 27–33. [Google Scholar] [CrossRef] [PubMed]
  230. Ferreira, I.G.; Pucca, M.B.; Cardoso, I.A.; Bordon, K.D.C.F.; Wiezel, G.A.; Amorim, F.G.; Rodrigues, R.S.; Rodrigues, V.D.M.; Brites, V.L.D.C.; Rosa, J.C.; et al. Insights into structure and function of CdcVEGFs, the vascular endothelial growth factor from Crotalus durissus collilineatus snake venom. Biochimie 2022, 200, 68–78. [Google Scholar] [CrossRef] [PubMed]
  231. Perales, J.; Villela, C.; Domont, G.B.; Choumet, V.; Saliou, B.; Moussatche, H.; Bon, C.; Faure, G. Molecular Structure and Mechanism of Action of the Crotoxin Inhibitor from Crotalus durissus terrificus Serum. Eur. J. Biochem. 1995, 227, 19–26. [Google Scholar] [CrossRef] [PubMed]
  232. Campos, P.C.; de Melo, L.A.; Dias, G.L.F.; Fortes-Dias, C.L. Endogenous phospholipase A2 inhibitors in snakes: A brief overview. J. Venom. Anim. Toxins Incl. Trop. Dis. 2016, 22, 1–7. [Google Scholar] [CrossRef] [Green Version]
  233. Lizano, S.; Domont, G.; Perales, J. Natural phospholipase A2 myotoxin inhibitor proteins from snakes, mammals and plants. Toxicon 2003, 42, 963–977. [Google Scholar] [CrossRef] [PubMed]
  234. Fortes-Dias, C.L.; Fernandes, C.A.H.; Ortolani, P.L.; Campos, P.C.; de Melo, L.A.; Felicori, L.F.; Fontes, M.R.M. Identification, description and structural analysis of beta phospholipase A2 inhibitors (sbβPLIs) from Latin American pit vipers indicate a binding site region for basic snake venom phospholipases A2. Toxicon X 2019, 2, 100009. [Google Scholar] [CrossRef]
  235. Ohkura, N.; Okuhara, H.; Inoue, S.; Ikeda, K.; Hayashi, K. Purification and characterization of three distinct types of phospholipase A2 inhibitors from the blood plasma of the Chinese mamushi, Agkistrodon blomhoffii siniticus. Biochem. J. 1997, 325 Pt 2, 527–531. [Google Scholar] [CrossRef] [Green Version]
  236. Fortes-Dias, C.; Fonseca, B.; Kochva, E.; Diniz, C. Purification and properties of an antivenom factor from the plasma of the South American rattlesnake (Crotalus durissus terrificus). Toxicon 1991, 29, 997–1008. [Google Scholar] [CrossRef]
  237. Fortes-Dias, C.L.; Ortolani, P.L.; Fernandes, C.A.H.; Lobo, K.R.; de Melo, L.A.; Borges, M.H.; Pazin, W.M.; Neto, M.D.O.; Fernandez, R.M.; Fontes, M.R.M. Insights on the structure of native CNF, an endogenous phospholipase A2 inhibitor from Crotalus durissus terrificus, the South American rattlesnake. Biochim. Biophys. Acta 2014, 1844, 1569–1579. [Google Scholar] [CrossRef]
  238. Pinto, K.R.; Souza, N.M.V.; Maciel, F.V.; de Abreu, T.A.G.; Reis, H.F.F.; Ortolani, P.L.; Fortes-Dias, C.L.; Cavalcante, W.L.G. Crotalus Neutralizing Factor (CNF) inhibits the toxic effects of Crotoxin at mouse neuromuscular preparations. Toxicon 2020, 191, 48–53. [Google Scholar] [CrossRef]
  239. Xavier, C.V.; Setúbal, S.D.S.; Lacouth-Silva, F.; Pontes, A.S.; Nery, N.M.; de Castro, O.B.; Fernandes, C.F.; Soares, A.M.; Fortes-Dias, C.L.; Zuliani, J.P. Phospholipase A2 Inhibitor from Crotalus durissus terrificus rattlesnake: Effects on human peripheral blood mononuclear cells and human neutrophils cells. Int. J. Biol. Macromol. 2017, 105, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
  240. Gimenes, S.N.C.; Aglas, L.; Wildner, S.; Huber, S.; Silveira, A.C.P.; Lopes, D.S.; Rodrigues, R.S.; Goulart, L.R.; Briza, P.; Ferreira, F.; et al. Biochemical and functional characterization of a new recombinant phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum. Int. J. Biol. Macromol. 2020, 164, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
  241. Gimenes, S.N.C.; Lopes, D.S.; Alves, P.T.; Azevedo, F.V.P.V.; Vecchi, L.; Goulart, L.R.; Rodrigues, T.C.S.; Santos, A.L.Q.; Brites, V.L.D.C.; Teixeira, T.L.; et al. Antitumoral effects of γCdcPLI, a PLA2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 breast cancer cell. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  242. De Rezende, N.A.; Torres, F.M.; Dias, M.B.; Campolina, D.; Chavez-Olortegui, C.; Amaral, C.F.S. South American rattlesnake bite (Crotalus durissus sp.) without envenoming: Insights on diagnosis and treatment. Toxicon 1998, 36, 2029–2032. [Google Scholar] [CrossRef] [PubMed]
  243. Jorge, M.T.; Ribeiro, L.A.; de Sérgio, N.A. A Comparison of Clinical and Epidemiological Aspects of Bites by Small and Large South American Rattlesnakes. Trop. Doct. 1997, 27, 106–107. [Google Scholar] [CrossRef]
  244. Instituto Nacional de Salud. Suero Antiofídico Polivalente INS, Colombia, Medication Package Insert. 2017; pp. 1–2. Available online: https://www.ins.gov.co/lineas-de-accion/Produccion/SiteAssets/Paginas/suero-antiofidico-polivalente/Inserto%20Suero%20Antiof%C3%ADdico%20Polivalente.pdf (accessed on 5 December 2022).
  245. Pardal, P.P.D.O.; Silva, C.L.Q.D.; Hoshino, S.D.S.N.; Pinheiro, M.D.F.R. Acidente por cascavel (Crotalus sp.) em Ponta de Pedras, Ilha do Marajó, Pará—Relato de caso. Rev. Para. Med. 2007, 21, 69–73. Available online: http://scielo.iec.gov.br/scielo.php?script=sci_arttext&pid=S0101-59072007000300012&lng=en (accessed on 23 October 2011).
  246. Bon, C.; Bouchier, C.; Choumet, V.; Faure, G.; Jiang, M.S.; Lambezat, M.P.; Radvanyi, F.; Saliou, B. Crotoxin, half-century of investigations on a phospholipase A2 neurotoxin. Acta Physiol Pharmacol Latinoam. 1989, 39, 439–448. [Google Scholar]
  247. Ministério da Saúde. Manual de diagnóstico e tratamento de acidentes por animais peçonhentos; Ministério da Saúde, Fundação Nacional de Saúde: Brasília, Brazil, 2001.
  248. Jorge, M.T.; Ribeiro, L.A. Epidemiologia e quadro clínico do acidente por cascavel sul-americana (Crotalus durissus). Rev. do Inst. Med. Trop. SÃ\poundso Paulo 1992, 34, 347–354. [Google Scholar] [CrossRef]
  249. Bucaretchi, F.; De Capitani, E.M.; Hyslop, S.; Mello, S.M.; Fernandes, C.B.; Bergo, F.; Nascimento, F.B. Compartment syndrome after South American rattlesnake (Crotalus durissus terrificus) envenomation. Clin. Toxicol. 2014, 52, 639–641. [Google Scholar] [CrossRef]
  250. Pinho, F.M.; Zanetta, D.M.; Burdmann, E.A. Acute renal failure after Crotalus durissus snakebite: A prospective survey on 100 patients. Kidney Int. 2005, 67, 659–667. [Google Scholar] [CrossRef] [Green Version]
  251. Pinho, F.M.O.; Yu, L.; Burdmann, E.A. Snakebite-Induced Acute Kidney Injury in Latin America. Semin. Nephrol. 2008, 28, 354–362. [Google Scholar] [CrossRef]
  252. Azevedo-Marques, M.; Hering, S.; Cupo, P. Animais Peçonhentos no Brasil, 2nd ed.; Cardoso, J.L.C., Haddad, V., Jr., França, F.S., Malaque, C.M.S., Wen, F.H., Eds.; Sarvier: São Paulo, Brazil, 2009; pp. 108–115. [Google Scholar]
  253. Azevedo-Marques, M.; Hering, S.; Cupo, P. Evidence that Crotalus durissus terrificus (South American rattlesnake) envenomation in humans causes myolysis rather than hemolysis. Toxicon 1987, 25, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
  254. Bucaretchi, F.; De Capitani, E.M.; Branco, M.M.; Fernandes, L.C.R.; Hyslop, S. Coagulopathy as the main systemic manifestation after envenoming by a juvenile South American rattlesnake (Crotalus durissus terrificus): Case report. Clin. Toxicol. 2013, 51, 505–508. [Google Scholar] [CrossRef] [PubMed]
  255. Azevedo-Marques, M.; Cupo, P.; Coimbra, T.; Hering, S.; Rossi, M.; Laure, C. Myonecrosis, myoglobinuria and acute renal failure induced by south american rattlesnake (Crotalus durissus terrificus) envenomation in Brazil. Toxicon 1985, 23, 631–636. [Google Scholar] [CrossRef] [PubMed]
  256. Pinho, F.M.; Pereira, I.D. Ofidismo [Snake bites]. Rev. Assoc. Med. Bras. 1992, 47, 24–29. (In French) [Google Scholar] [CrossRef]
  257. Evangelista, J.S.A.M.; Evangelista, J.J.F.; Evangelista, I.L.; Nojosa, D.; Nascimento, N.; Souza, M.H.; Alves, R.S.; Martins, A.M.C.; Moraes, M.E.A.; Monteiro, H.S.A. Hypotensive Effects of the Crotalus Durissus Cascavella Venom: Involvement of NO. Nat. Prod. Commun. 2011, 6, 871–874. [Google Scholar] [CrossRef] [Green Version]
  258. Santos, S.; Jesus, R.; Simões, L.; Vasconcelos, W.; Medeiros, I.; Veras, R.; Casais-E-Silva, L.; Silva, D. NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation. Toxicon 2017, 133, 10–17. [Google Scholar] [CrossRef]
  259. Albuquerque, P.L.M.M.; Jacinto, C.N.; Silva Junior, G.B.; Lima, J.B.; Veras, M.d.S.B.; Daher, E.F.; Daher, E.F. Acute kidney injury caused by Crotalus and Bothrops snake venom: A review of epidemiology, clinical manifestations and treatment. Rev. Inst. Med. Trop. Sao Paulo 2013, 55, 295–301. [Google Scholar] [CrossRef] [Green Version]
  260. Monteiro, H.; da Silva, I.; Martins, A.; Fonteles, M. Actions of Crotalus durissus terrificus venom and crotoxin on the isolated rat kidney. Braz. J. Med. Biol. Res. 2001, 34, 1347–1352. [Google Scholar] [CrossRef] [Green Version]
  261. Yamasaki, S.C.; Villarroel, J.S.; Barone, J.M.; Zambotti-Villela, L.; Silveira, P.F. Aminopeptidase activities, oxidative stress and renal function in Crotalus durissus terrificus envenomation in mice. Toxicon 2008, 52, 445–454. [Google Scholar] [CrossRef]
  262. Martins, A.M.; Toyama, M.H.; Havt, A.; Novello, J.C.; Marangoni, S.; Fonteles, M.C.; Monteiro, H.S. Determination of Crotalus durissus cascavella venom components that induce renal toxicity in isolated rat kidneys. Toxicon 2002, 40, 1165–1171. [Google Scholar] [CrossRef]
  263. Cupo, P.; de Azevedo-Marques, M.M.; Hering, S.E. Absence of myocardial involvement in children victims of Crotalus durissus terrificus envenoming. Toxicon 2003, 42, 741–745. [Google Scholar] [CrossRef] [PubMed]
  264. de Paola, F.; Rossi, M.A. Myocardial damage induced by tropical rattlesnake (Crotalus durissus terrificus) venom in rats. Cardiovasc. Pathol. 1993, 2, 77–81. [Google Scholar] [CrossRef] [PubMed]
  265. de Siqueira, J.E.; Higuchi Mde, L.; Nabut, N.; Lose, A.; Souza, J.K.; Nakashima, M. Lesão miocárdica em acidente ofídico pela espécie Crotalus durissus terrificus (cascavel). Relato de caso [Myocardial lesions after snake bites by the Crotalus durissus terrificus species (rattlesnake). A case report]. Arq. Bras. Cardiol. 1990, 54, 323–325. [Google Scholar]
  266. Cupo, P.; Azevedo-Marques, M.; Hering, S. Acute myocardial infarction-like enzyme profile in human victims of Crotalus durissus terrificus envenoming. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 447–451. [Google Scholar] [CrossRef] [PubMed]
  267. Santos, W.; Montoni, F.; Eichler, R.; Arcos, S.S.S.; Andreotti, D.Z.; Kisaki, C.Y.; Evangelista, K.B.; Calacina, H.M.; Lima, I.F.; Soares, M.A.M.; et al. Proteomic analysis reveals rattlesnake venom modulation of proteins associated with cardiac tissue damage in mouse hearts. J. Proteom. 2022, 258, 104530. [Google Scholar] [CrossRef] [PubMed]
  268. Simões, L.O.; Alves, Q.L.; Camargo, S.B.; Araújo, F.A.; Hora, V.R.; Jesus, R.L.; Barreto, B.C.; Macambira, S.G.; Soares, M.B.; Meira, C.S.; et al. Cardiac effect induced by Crotalus durissus cascavella venom: Morphofunctional evidence and mechanism of action. Toxicol. Lett. 2020, 337, 121–133. [Google Scholar] [CrossRef] [PubMed]
  269. Neto, J.D.O.; Silveira, J.A.D.M.; Serra, D.S.; Viana, D.D.A.; Borges-Nojosa, D.M.; Sampaio, C.M.S.; Monteiro, H.S.A.; Cavalcante, F.S.; Evangelista, J.S.A.M. Pulmonary mechanic and lung histology induced by Crotalus durissus cascavella snake venom. Toxicon 2017, 137, 144–149. [Google Scholar] [CrossRef]
  270. Azevedo, E.; Figueiredo, R.G.; Pinto, R.V.; Ramos, T.; Sampaio, G.P.; Santos, R.P.B.; Guerreiro, M.L.D.S.; Biondi, I.; Trindade, S.C. Evaluation of systemic inflammatory response and lung injury induced by Crotalus durissus cascavella venom. PLoS ONE 2020, 15, e0224584. [Google Scholar] [CrossRef] [Green Version]
  271. da Silva, J.G.; Soley, B.D.S.; Gris, V.; Pires, A.D.R.A.; Caderia, S.M.S.C.; Eler, G.J.; Hermoso, A.P.M.; Bracht, A.; Dalsenter, P.R.; Acco, A. Effects of the Crotalus durissus terrificus snake venom on hepatic metabolism and oxidative stress. J. Biochem. Mol. Toxicol. 2011, 25, 195–203. [Google Scholar] [CrossRef]
  272. Barraviera, B.; Coelho, K.Y.; Curi, P.R.; Meira, D.A. Liver dysfunction in patients bitten by Crotalus durissus terrificus (Laurenti, 1768) snakes in Botucatu (State of São Paulo, Brazil). Rev. Inst. Med. Trop. Sao Paulo 1995, 37, 63–69. [Google Scholar] [CrossRef] [Green Version]
  273. Fernandes, F.H.; Bustos-Obregon, E.; Matias, R.; Dourado, D.M. Crotalus durissus sp. rattlesnake venom induces toxic injury in mouse sperm. Toxicon 2018, 153, 17–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  274. Ministério da Saúde. Secretaria de Vigilância em Saúde; Guia de Vigilância em Saúde: Brasília, Brazil, 2017.
  275. World Health Organization. Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins; WHO: Geneva, Switzerland, 2010; p. 6. Available online: http://www.who.int/biologicals/expert_committee/Antivenom_WHO_Guidelines_DJW_DEB_mn_cp.pdf (accessed on 5 December 2022).
  276. Calmette, A. The Treatment of Animals Poisoned with Snake Venom by the Injection of Antivenomous Serum. Br. Med. J. 1896, 2, 399–400. [Google Scholar] [CrossRef] [Green Version]
  277. De Oliveira, I.S.; Pucca, M.B.; Sampaio, S.V.; Arantes, E.C. Antivenomic approach of different Crotalus durissus collilineatus venoms. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
  278. Woods, C.; Young, D. Clinical safety evaluation of F(ab′)2 antivenom (Crotalus durissus—Bothrops asper) administration in dogs. J. Veter.-Emerg. Crit. Care 2011, 21, 565–569. [Google Scholar] [CrossRef] [PubMed]
  279. Gutiérrez, J.M.; León, G.; Burnouf, T. Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals 2011, 39, 129–142. [Google Scholar] [CrossRef]
  280. Grandgeorge, M.; Véron, J.; Lutsch, C.; Makula, M.; Riffard, P.; Pépin, S.; Scherrmann, J. Preparation of improved F(ab′)2 antivenoms. An example: New polyvalent anti-European vipers (equine). Toxicon 1996, 34, 148. [Google Scholar] [CrossRef]
  281. Al-Abdulla, I.; Garnvwa, J.M.; Rawat, S.; Smith, D.S.; Landon, J.; Nasidi, A. Formulation of a liquid ovine Fab-based antivenom for the treatment of envenomation by the Nigerian carpet viper (Echis ocellatus). Toxicon 2003, 42, 399–404. [Google Scholar] [CrossRef]
  282. Calvete, J.J.; Sanz, L.; Angulo, Y.; Lomonte, B.; Gutierrez, J.M. Venoms, venomics, antivenomics. FEBS Lett. 2009, 583, 1736–1743. [Google Scholar] [CrossRef] [Green Version]
  283. Baudou, F.G.; Litwin, S.; Lanari, L.C.; Laskowicz, R.D.; Damin, C.F.; Chippaux, J.-P.; de Roodt, A.R. Antivenom against Crotalus durissus terrificus venom: Immunochemical reactivity and experimental neutralizing capacity. Toxicon 2017, 140, 11–17. [Google Scholar] [CrossRef]
  284. Lynch, M.J.; Ritter, S.C.; Cannon, R.D. Successful Treatment of South American Rattlesnake (Crotalus durissus terrificus) Envenomation with Crotalidae Polyvalent Immune Fab (CroFab™). J. Med. Toxicol. 2010, 7, 44–46. [Google Scholar] [CrossRef] [Green Version]
  285. Beghini, D.G.; da Cruz-Höfling, M.A.; Randazzo-Moura, P.; Rodrigues-Simioni, L.; Novello, J.C.; Hyslop, S.; Marangoni, S. Cross-neutralization of the neurotoxicity of Crotalus durissus terrificus and Bothrops jararacussu venoms by antisera against crotoxin and phospholipase A2 from Crotalus durissus cascavella venom. Toxicon 2005, 46, 604–611. [Google Scholar] [CrossRef] [PubMed]
  286. Instituto Bioclon. Antivipmyn®Tri, México, Full Prescribing Information (FPI). 2016, pp. 1–7. Available online: https://archiveansm.integra.fr/afssaps/content/download/149311/1964979/version/2/file/FINAL_Antivipmyn+Tri+IPP-A_sep2016_ENG.pdf (accessed on 5 December 2022).
  287. Otero-Patiño, R.; Silva-Hadad, J.; Barona, M.; Toro, M.; Quintana, J.; Díaz, A.; Vásquez, I.; Rodríguez, V.; Delgado, C.; Fernández, M.; et al. Accidente bothrópico en Colombia: Estudio multicéntrico de la eficacia, y seguridad de Antivipmyn-Tri® un antiveneno polivalente producido en México. Iatreia 2007, 20, 244–262. [Google Scholar]
  288. Baum, R.; Bronner, J.; Akpunonu, P.; Plott, J.; Bailey, A.; Keyler, D. Crotalus durissus terrificus (viperidae; crotalinae) envenomation: Respiratory failure and treatment with antivipmyn TRI® antivenom. Toxicon 2019, 163, 32–35. [Google Scholar] [CrossRef] [PubMed]
  289. Fonseca, A.; Renjifo-Ibáñez, C.; Renjifo, J.M.; Cabrera, R. Protocol to obtain targeted transcript sequence data from snake venom samples collected in the Colombian field. Toxicon 2018, 148, 1–6. [Google Scholar] [CrossRef] [PubMed]
  290. Warrell, D.A. Snake bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef]
  291. Maciel, F.V.; Ramos Pinto, Ê.K.; Valério Souza, N.M.; Gonçalves de Abreu, T.A.; Ortolani, P.L.; Fortes-Dias, C.L.; Garrido Cavalcante, W.L. Varespladib (LY315920) prevents neuromuscular blockage and myotoxicity induced by crotoxin on mouse neuromuscular preparations. Toxicon 2021, 202, 40–45. [Google Scholar] [CrossRef]
  292. Gutiérrez, J.M.; Lewin, M.R.; Williams, D.J.; Lomonte, B. Varespladib (LY315920) and Methyl Varespladib (LY333013) Abrogate or Delay Lethality Induced by Presynaptically Acting Neurotoxic Snake Venoms. Toxins 2020, 12, 131. [Google Scholar] [CrossRef] [Green Version]
  293. de Souza, J.; Oliveira, I.C.; Yoshida, E.H.; Cantuaria, N.M.; Cogo, J.C.; Torres-Bonilla, K.A.; Hyslop, S.; Junior, N.J.S.; Floriano, R.S.; Gutiérrez, J.M.; et al. Effect of the phospholipase A2 inhibitor Varespladib, and its synergism with crotalic antivenom, on the neuromuscular blockade induced by Crotalus durissus terrificus venom (with and without crotamine) in mouse neuromuscular preparations. Toxicon 2022, 214, 54–61. [Google Scholar] [CrossRef]
  294. Conte, T.; Franco, D.; Baptista, I.; Bueno, C.; Selistre-De-Araújo, H.; Brum, P.; Moriscot, A.; Miyabara, E. Radicicol improves regeneration of skeletal muscle previously damaged by crotoxin in mice. Toxicon 2008, 52, 146–155. [Google Scholar] [CrossRef]
  295. Nascimento, T.; Conte, T.; Rissato, T.; Luna, M.; Soares, A.; Moriscot, A.; Yamanouye, N.; Miyabara, E. Radicicol enhances the regeneration of skeletal muscle injured by crotoxin via decrease of NF-kB activation. Toxicon 2019, 167, 6–9. [Google Scholar] [CrossRef]
  296. Luiz, M.B.; Pereira, S.S.; Prado, N.D.R.; Gonçalves, N.R.; Kayano, A.M.; Moreira-Dill, L.S.; Sobrinho, J.C.; Zanchi, F.B.; Fuly, A.L.; Fernandes, C.F.; et al. Camelid Single-Domain Antibodies (VHHs) against Crotoxin: A Basis for Developing Modular Building Blocks for the Enhancement of Treatment or Diagnosis of Crotalic Envenoming. Toxins 2018, 10, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  297. Silva, M.C.S.; Pereira, S.S.; Gouveia, M.P.; Luiz, M.B.; Sousa, R.M.O.; Kayano, A.M.; Francisco, A.F.; Prado, N.D.R.; Dill, L.S.M.; Fontes, M.R.M.; et al. Anti-Metalloprotease P-I Single-Domain Antibodies: Tools for Next-Generation Snakebite Antivenoms. BioMed Res. Int. 2022, 2022, 2748962. [Google Scholar] [CrossRef] [PubMed]
Figure 1. The snake C. d. cumanensis. (A): Large, articulated, anterior fangs are visible. (B): General appearance of the animal, where the shape of its body can be seen, wide in the central part and thin at the ends. (C): A typical rattle. (D): Method of perching in a dangerous situation. The patterning of its scales can be seen. (E): Young individual, in whom the body patterning is very well appreciated. (F): Front part of the snake showing parallel dorsal lines that extend from the head to the front part of the trunk.
Figure 1. The snake C. d. cumanensis. (A): Large, articulated, anterior fangs are visible. (B): General appearance of the animal, where the shape of its body can be seen, wide in the central part and thin at the ends. (C): A typical rattle. (D): Method of perching in a dangerous situation. The patterning of its scales can be seen. (E): Young individual, in whom the body patterning is very well appreciated. (F): Front part of the snake showing parallel dorsal lines that extend from the head to the front part of the trunk.
Toxins 14 00875 g001
Figure 2. The punctiform wound caused by one of the fangs of a C. d. cumanensis snake, showing the development of edema in the hand in the early stage of envenomation.
Figure 2. The punctiform wound caused by one of the fangs of a C. d. cumanensis snake, showing the development of edema in the hand in the early stage of envenomation.
Toxins 14 00875 g002
Table 1. Most studied subspecies of C. durissus, indicating their geographical location and the percentages of the most relevant components of their venom.
Table 1. Most studied subspecies of C. durissus, indicating their geographical location and the percentages of the most relevant components of their venom.
C. durissusReported RegionCrotoxinSVSPCTLSVMPCrotamineLAAOBIPDisintegrinOthersRefs.
IIIIIIIV
C. d. cumanensis
Humboldt, 1833
Colombia and Venezuela64.716.331.18--3.3-0.0 *–5.773.16-13.71.85[8,9,10]
C. d. ruruima
Hoge, 1966
North of Venezuela82.78.14.32.91.5<0.5<0.1- [11]
C. d. cascavella
Wagler, 1824
North of Brazil72.51.2<0.1<0.1<0.1-20.3[12]
C. d. collilineatus
Hoge, 1966
Northeast of Brazil67.41.9<0.10.420.80.5-13.8[12]
C. d. terrificus
Laurenti, 1768
Centre of Brazil48.5–82.70.7–25.3<0.1–2.70.09–5.51–190.6–4.51.80.5–22.348.5–82.70.7–25.3-<0.1–2.7[3,11,13,14,15]
C. d. durissus
Linnaeus, 1758
South of the Amazonian forest of Brazil, extreme southeast of Peru, Bolivia, Paraguay, Uruguay, north of Argentina685.1<0.2 2.4 123.60.97.9 [16]
* C. d. cumanensis species from the Colombian Caribbean are Crotamine-negative, unlike individuals from the Orinoquía and Magdalena Medio. SVSP: snake venom serine protease, CTL: C-type lectin-like, SVMP: snake venom metalloprotease, LAAO: L-amino acid oxidase, BPP: bradykinin-enhancing peptide.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Cañas, C.A. Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins 2022, 14, 875. https://doi.org/10.3390/toxins14120875

AMA Style

Cañas CA. Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins. 2022; 14(12):875. https://doi.org/10.3390/toxins14120875

Chicago/Turabian Style

Cañas, Carlos A. 2022. "Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia" Toxins 14, no. 12: 875. https://doi.org/10.3390/toxins14120875

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop